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RTD TDR-63-3096, Vol I

FOREWORD

This report is one of five volumes presenting the re its of a series of

studies icarried out for the Air Force by General Americ.. Transportation

Corporation and Newmark-Hansen Associates. The five volumes comprise

RTD TDR-63-3096 and are organized as follows:

Vol. I Structure Interior Motions Dur to Air Blast Induced
Ground Shock

Vol. II Structure Interior Motions Due to Directly Transmitted
Ground Shock

Vol. III Response Spectra of Single-Degree-of-Freedom Elastic
and Inelastic- Systems .

Vol. IV Response Spectra of Two-Degree-of-Freedom Ela. ic
and Inelastic Systems

Vol. V Response Spectra of Multi-Degree-of-Freedom Elastic
Systems

Volumes I and II are authored b- General American Transportation

Corporation. Volumes III, IV, and V are authored by Newmark-Hansen and

Associates. Volumes II, IV, and V will be published early in 1965.

Acknowledgment is made to Captain H. Auld, Captain D. H. Merkle,

and Lt J. F. Flo-ry of AFWL for their continued cooperation during the

course of the project and to Dr. S. Raynor of Northwestern University who

serves as consultant to MRD of General knmerican Transportation Corporation.



RTD TDR-63-3096, Vol I

A BST RAC T

The primary purpose of this report i.s to provide guidance for designers

of shock isolation s'stems during the initial phases of design. Volume I

presents methods for estimating appropriate free field waveforms and the

influence of soil-structure interaction upon interior structure motion. Volume

lIT of RTD TDR-.63-3096, prepared by Newmark-Hansen Associates, presents

methods for synthesizing peak relative response spectra from the spectra

characteristic of pulses of simple shape.

The inherent error in shock isolation design is at least +20 percent; to

reduce this, much mniore soil test data than is now available will be required.

Further, based on purely theoretical arguments, shock isodatione r se can

be eliminated for much equipment used in hard installations, If isolators are

required they should be designed as low frequency systems that impose one g

acceleration on the isolated equipment. Increase of the acceleration to be

tolerated by the equipment will, in the great majority of instances, reduce

neither the rattle space required nor the isolator cost.

"Methods for making the necessary computations are given.

PUBLICATION REVIEW

This report has been reviewed and is approved.

JOHN F. FLORY
2Lt USAF
Project Officer

T HO M.AK LOWRY, j". PER L. HUIE
Colonel USAF Colon I UiSAF
Chief, Civil Engineering Brmt useh Chief, Research Division
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A 9tructure surface area Ni Norm, ith mode

c wave propagation velocity n acceleraticn in gravity units

c average compression wave n pulse -oropagation distance
proeagation velocity in initial pulse widths

c sonic velocity of shell material n subscript, nth mode.
c

D depth to bedrock P pressure

D flexural rigidity Pa peak overpressure

E Young's modulus R structure radius

E k kinetic energy r pulse decay ratio

E potential energy s pulse coordinate in
P initial pulse widths

AE W potential energy increment T (t) response amplitude of ith mode
F Spring force

t time
f frequency, cycles per second

9 acceleration of 6.ravity 
t d duratiop of wave

t rise time
h shell thickness r

I impulse 
t r period, rigid mode

t s subtangent duration
i subscript, ith mode

K soil resistance factor t d period, deformational mode

t* time requiied for peak
k Spring constant pressure to attenuate to a

given level
L wave path length U soil or air shock ve3ocitY

L s subtangent wave length V structure volume
M mass

v velocity
m shell unit mass

w weight
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S- acceleration

S- factor defined in text

y - soil density.

6 = percyclic damping constant

'5 = damping factor

S= unit strain

X = a characteristic length
for shells

S = Poisson's Ratio
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Ti(t) = forcing function for ith mode
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1 mode in soil
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] - rectangular coordinate ;3-+-m
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Cl = compression seismic velocity p = soil mass density

c2  = shear seismic velocity T,. (t) = forcing function for
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D = proportionality constant
= natural frequency of
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E = Young's Modulus CD. = natural frequency of
ith mode in vacuum

h = shell thickness
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j modal index

K,k = soil resistance factors
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n = modal index

N. modal norm
A
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pressure to structure
deformation pressure

S (t) = rigid body mode amplitude
function

Ti(t) modal amplitude function
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= defined in Figure A.I
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missile have been established. The ineside diameter of the silo within which

the missi'le will be house' may depend more strongly on the rattle space required

by the missile and its isolation system than upon any other single factor save

missile envelope diameter. The cost of the missile silo and associated door

and operating equipment vcries somewhere between the square and the cube of

the silo diameter, other factors being equal. Therefore the shock isolation

designer is placed in the difficult position of having to establish space re-

quirements that are adequate for isolation but held to a minimum in order to

keep costs down at a time when he has little detailed information upon which

to base his estimates. The primary purpose of this report is to provide methods

that will assist the shock isolation designer in arriving at conclusions to this

and similar problems.

Two general avenues of approach were open at the outset of the work herein

reported:

1. Formulas and the necessary associated compendium of data could be

prepared so that any problem likely to face a designer would have

been considered and graphs presented covering suitable ranges of

the various parameters.

2. Methods could be developed the use of which would enable the

'9esigner to consider the particular problem he faced. from basic

principles and to expeditiously carry out the design without

reliance upon a compendium of previously ,omputed data.

r !



Both approaches were considered on the project but it became evident that

the latter approach was by far the more desirable. Shock isolation design for

the suspension system of a large liquid fueled. missile and the design of isolators

for a ruggelized item of electronic equipment iounted on a wall bracket have

little in common other than the name "shock isolation" and the fundamental laws

of mechanics governing the design. The compendium required for the first app oach

would have been truly massive. Further, it developed that, within engineering

accuracy, the second method became quite practical.

The vague 'concept "shock sensitivity of equipment" in the past has received

considerable attention. Nevertheless at the present time it is practically

impossit1c to clearly define the shock sensitivity of an individual item of

equipment let alone to formulate a general sensitivity criterion with sufficient

accuracy and mathematical prevision to enLble deduction of shock isolation

criteria. The complexities of equipment used are so great and so varied that

efforts in this direction havc been unavailing. However, at least one precise

statement fundamental to shock sensitivity c:in be made: damage to an equipnent

element is induced when either the total energy communicated to the element or

the rate of flow of energy delivered to the element exceeds certain critical

values. Often, of course, it is a practical impossibility to distinguish the

critical energy component and/or its critical level. Knowing, however, that the

damaging agent ultimately is energy, regardless of how described, we can gain

considerable insight into the overall shock isolation problem by considering the

path followed by the energy leaving an exploding weapon and ultimately arriving

at a sensitive element of equipment.



FigurF. 1.1 shows two block diagrams representing, in a general way, the

propagation of energy originating at the detonation of a nuclear weapon through

the blast environment to shock sensitive equipment. One block diagram repre-

sents the conditions for whi-eii we have daua obtained at the nucl.ear weapons

test sites; the second represents tbc situation at a proposed inistallation site.

Consider, first, the test site. Eight blocks are shown. Of these we have

factual infc'rmation for three blocks; yield, the detonation parameters, range

and height of burst; the free field gage outputs and, in a few instances,

response gage outputs. We have partial infomnation for a fourth block, the

soil characteristics and depth at which measurements were taken. It should be

observed that the output rf the free field gage is not what migbt be termed

the true free field underground blast motion condition. It is the output of

a gage which, by its very presence, modifies the free field that would exist in

its immediate vicinity if the gage were not there. Further, it is the output

measured over a relatively small area, perhaps that of a cylinder a few inches

in diameter or less. Portions of the gage output would be substantially the

same if the gagr were moved significant distances, with range, soil parameters

and depth held constant. Other portions of its output, however, would vary

markedly if the gage were moved only a few feet or even, in some cases, a fe,'

inches- These latter portions can be accounted for in any design procedure

only on a statistical basis, if they are indeed significant.

At a weapons system installation, it should be ncted, the energy released

by detonation of the bomb is modified at least four times before reaching the

portion of the equipment subject to damage. ThE energy is first converted from

'4
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the pressure -voludle an'). kinetic energy of the bomb fragments snt. air-soil

environment into the energy that we term the free field pressure. This, in

turn,, may or may not be marked~ly modified by any structure buritcd in the free

field. Then the energy is further greatly modtfied by any isolator provided

within the structure between the structure itself and the equipment mounted

therein. It is to gain this modification that the isolator is provl~ed.

Finally, in coursing through the equipment, that portion of the energy passing

through the isolator is again further modified significantly before reaching

the particular element of the equipment at which damage might be caused. Our

problem is to deduce from the limited information represented by the shaded

blocks in the test site block di&gram. a series of criteria, theories,, =~d design

formulas which will enable us., within an acceptable degree of accuracy., to follow

the energy tmhrough the block diagram repremminting conditions at an installation

site and arrive at meaningful criteri~a for the design of isolators of minimum

size and cost but adequate mechanical properties to insure that the .qldpment

mounted therein survives the blast.

Since the energy successively pp.sses through some four major modifications

before arriving at the pcint at which it can cause damage, it is evident that

neglect of one of the four can introduce more error in our overall design procedure

than might be estmiruau'-e by refined design of any of the other energy conversions.

In particular, the block diagram shown in Figure 1.2 which has tacidly been

assumed for some hard structure shock isolation designs, can be a poor repre-

sentation of the overall problem. The methods of extrapolating test site gage

records to conditions at an installation site are questionable for large structures.

sie ndariv a eainfu citri orth dsin f slaor o mn6u
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The point of departure for the project reported. herein was Block 3, the

free field motion history of Figure 1.1. The energy chain from the bomb burst

to free field is an extremely complex area that is receiving a great deal of

effort by a number of investigators at the present time. For this project we

have made use of information presently available to describe generally the

free Pield motion history that would exist wider any particular set of circum-

stances. However, we have not imposcd the requirement that the free field data

be of any particular form or characterizable by any specific mathematical

expression. Thus, as further information is developed on the nature of the

free field this can be fit into the shock isolation design scheme presented.

A substantial portion of tne effort carried out on the project is concerned

with the second energy change represented by block 4 of Figure 1.1, the soil

structure interaction. Even though a structure buried in soil rem0ins substantially

rigid during ground motion its presence has a significant effect on the total energy

available to the isolator and isolated equipment and possibly even more influence

on t"e rate of delivery of this enE±-gy. The natural vehicle for jarrying out

thesi computations is the normal mode method which is discussed in considerable

detail in Appendix A of this report.

In the following subsections particular aspects of the isolation problem

are discussed in nonmathematical terms.

Il9



1 1 Normal Modes, Damping and Coupling

1.1 1 Undamped Modes

The vibration of an undamnped linear system., that is a system in which all

displacements are proportional to the loads, free of damping, always can be

expressed as an infinite series of vibrations of certain special configurations

termed "normal modes", This is true no matter how complex the overall system of

vibration is and is independent of whether the vibration is free or forced;

indeed for free vibration each modal motion consists of a particular geometric

configuration, each point of which oscillates harmonically in phase with all

other points at a specific frequency characteristic of the mode. Such a vibra-

tion would continue indefinitely. The total en. (gy of each mcde would be

independent of time, and there would be no interchange of energy between the

various excited modes. It is this energy independence quality that ultImately

defines the various modal configurations. At the maximum displacement of' a mode

all of its energy would be potential, stored in the system elements. A quarte-

neriod later all of the energy would be kinetic,. For this reason this energy

termed tb- ,lating energy of the mode.

When tae mathematics are carried out the amplitude of the free vibration of

a normal mode is found to satisfy the same equation as a simple mass-spring system,

+ (1+) 2x = 0 (Iol)
n n n

•imm



i where

xn is the amplitude of the nth mode, a function of time

W is the natural frequency of the nth mode.

If a distributed system of forces is applied to the structure, vibration

again will consist of the infinite series of normal modes. However, in this

instance each mode will not vibrate harmonically, rather the modal amplitude

will be given by solution of Equation (1.2).

YE + =f (1.2)

n n n n

This equation is seen to be analogous to the equation of forced motion for a

mass-spring system where the function fn fills the role of forcing function.

• It will be found that f is equal to the rate of energy delivery to the nthSn

mode by the distributed forces applied to the structure and multiplied by a

constant characteristic of the mode.

Since the energy delivered to a particular mode by a forcing function

generally is inversely Droportional to a power of the modal frequency on the

order of 2-to-3 the significance of the high frequency modes decreases rapidly.

Therefore, though methematically accurate solution of the problem requires

consideration of a infinite number of modes, engineering accuracy kenerally can

be obtained by considering two or three, and often times only the fundamental

mode is of real significance. An exception to thizs situation occurs when a

resonance effect takes place; however, for the transient response '!.at is of

principal importance for nuclear blast induced shock, resonance plays a secondary

role because the forcing function (ground shock wave) does not last a sufficient

number of periods to build up a strong resonance.

,11



An aspect of normal mode theory that is unfortunately frequently glossed

over in the literature deserves specific attention. Most of the elementary

.oblems discussed in texts on vibratiin, e.g., strings, beams, membranes,

and plates possess a characteristic that simplifies analysis but is not intrinsic

to the general problem: The displacements of all points of the structures

mentioned are parallel to each other, i.e., all displacements of tha string and

the beam are perpendicular to the axes of these members; the displacement of

all points on the surface of the plate and membrane are perpendicular to the

rest planes of these elements. In general, this situation is not true. Thus

the displacements of the circular cylinder vibrating in its bending modes consists

of a radial component and a simultaneous lateral component tangent to the surface

of the cylinder. Though the motion of any particular point on the surface of the

cylinder is along a straight line, the lines at different points on the structure

are not parallel. Further, for the cylinder there is no point at which the scalar

magnitude of the motion is zero in -a manner analogous to the nodal points of

vibration of strings and beams or the nodal curves of membranes and plates.

1.1.2 bamping and Coupling

It can bc- shown mathematically that the normal mode solution exists for a

damped structure if the equations of motion can be put in the form of Sturm-

Liouville problem. Within this limitation the only case which is of physical

significance and which may be, from a practical standpoint, solve( aathematically

is the case where the damping force is proportional to velocity at every point of

the system and has the same direction as the displacement vector at every point

of the system. Furthermore, the scalar proportionality constant, i.e., the

12



damping constant relating the damping force vector and the velocity vector,

must be constant for the entire system. Most real systems do not comply with

this criterion. However, it often can be used as a fair approximation to the

real systel"''-' it must be appreciated that the major reason for making the

approxin mmon is not physical but matmhematical; he problem is much simpler to

solve if velocity proportionate damping is assumed.

If the damping of the system is not velocity proportioiate the normal mode

method of solution can be employed though in this case it loses some of its

physical reality and becomes essentially a mathematical tool of some complexity

that will, however, give results to any desired degree of accuracy if sufficient

computations are carried out.

The influence of no.Arelocity proportionate damping can have serious con-

sequences to design; therefore, its effects will be discussed at some length

from the physical standpoint so that the designc~r may gain some feel as to what

might actually take place in a particular isolation system. The crux of the

matter is that substantial motions,, other -than those anticipated by an elementary

application of the normal mode theory, may develop after passage of the ground

shock wave. These might require considerable additional rattle space and sub-

stantial modification of the suspcnsion mechanism over those required if the

system were truly undamped in the mathematical sense.

The physical reasons fcr this situation can most easily be observed by

considering the simplest of multi-degree of freedom systems, a pair of marsaes

and springs in series. In Figure 1.3 we have shown two masses in series with

two springs but only one dashpot connecting the two masses. Evidenty the

S.. . . . = i i mm
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requirement that the proportionality constant for damping be the same for all

elemente is not met by the system shown in Figure 1.3. Now if the dashpot were

eliminated the system shown would have two normal modes. For each mode,the

contribution to the displacements xI and x2 would always be proportional though

the proportionality constants for the two modes would differ. With the dashpot

in place, however, during motion of the masses a for-e is developed by the dashpot

which is proportional to the difference between the velocity of mass 2 and ma3s 1.

The energy dissipated is equal to the integral of the product of this dashpot

force and the differential relative displacement of the masses. However, the

dashpot force is appli.ed to both masses. Therefore, if we assume that the gross

I.bion of the Aa&hpot is to the right the dashpot system will remove energy from

the M2, k 2 system and add energy to the M,, k1 system. In other words, in addition

to dissipating energy as heat, the damping element transmits energy from one spring-

mass element to the other, depending on motions of the elcments connected.

In Appendix A of this report the analysis of the general system is presented.

There it is found that for nonvelocity proportionate damping the damping factors

for all modes couple energy into all other modes. Thus, to return to Figure 1.3

if one mode only were to be excited the dashpot immediately would begin to remove

energy f'rom thi:ý mode and transmit it to the mode that was not initially excited.

Of course, while doing this it also would dissipate some energy as heat. If the

vibration continued for a long enough period of time, ultimately all of the energy

initially supplied to the excited mode would have been dissipated as heat or

coupled to the mole that was not initially excited. In general, this transfer of

energy requires a great many periods of vibration. Therefore, the effect is most
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pronounced when the amount of damping is small so that only a small portion of

the energy is dissipated as heat during each period of vibration and the system

continues to vibrate long enough for the damping elements to transfer the energy

from •he excited to the unexcited mode. These are precisely the conditions that

exist in a real system that we normally consider undamped.

The several modes for real systems may differ ma`-redly from each other in

their geometry and directions of motions. For instance, a pendulum supported

on springs has not only the obvious pendulum motion in two directions and the

gross vertical and lateral motions of the support but also a rotation about the

axis of the pendulum. If a suspension system, such as used for some missiles,

consisting essentially of a pendulolus ca•- containing the missile and supgort .. .

by springs at the top of the silo were not sufficiently dampedthe energy

iommunicated to the pendulum by the ground shock wave might, after a period of

time, appear as a rotary motion of the entire suspension system about a vertical

axis, a situation that could induce severe damage to the missile and its suspension

system if not provided for in the design. Further even if the torsional mode were

not significantly excited, coupling of even a small amount of the energy of verti-

cal oscillation to the horizontal pendulum mode can be seri.ous because a small

amount of circulating energy can represent a wide swi..g for a long pendulum.

The modes of a system having nonvelocity proportionate damping, as discussed

in the previous paragraphs, are accurately described as coupled modes. The damping

couples energy from one mode to the other. Unfortunately, the term "coupled modes"

is sometimes applied to an entirely different motion configuration. This may be

explained as follows. The vibration of a 6eneral system is a vector quantity, i.e.,
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for a given mode, motion at different parts of the system may aIake place in

different directions even though the motions are at all times in phase with elch

other. For any particular vector mode, this motion can be resolved into scalar

components in any suitably chosen set of coordinate directions. The scalar

components are sometimes referred to as coupled modes. These cannot exist

independently of each other and individually do not have the simple e:iergy

relations characte'iizing true modes. In this report when modal components are

considered they are so identified.
4

7 -If any damping at all is present, during each cycle of vibration a certain

fraction of the circulating energy is removed from each mode. Normally, damping

is considered to be a conversion of the mechanical circulating energy into hea "

by one mechanism or another, dashpots, internal friction, etc. A more general

definition of damping is any mechanism that removes some of the circulating energy

from the system during the course of a period of vibration. Under this definition

the divergent wave of energy emanating from a structure vibrating in a material

medium is a form of damping. The energy carried by the wave does not return to

the structure. FGr instance, a missile silo vibrating in soil will radiate a

substantial energy wave. The energy carried by this wave does not return to the

silo. Therefore, this aspect of soil structure interaction introduces a signifi-

cant amount of damping. In Appendix A it is shown that for the lower order modes

of reasonably proportioned structures the damping is greater than critical.

Therefore, for these modes there is negligible coupling of energy between modeb

induced by departure of the real damping from velocity proportionality and approxi-

mations can be made for computational purposes without thercby neglecting

significant motion components.
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1.2 Shock Spectrum

The peak relative response spectrum provides a useful tool for shock isola-

tion design under certain circumstances. The companion volume of this report,

prepared by Newmark-Hansen & Associates is devoted exclusively to the several

aspects of shock spectra as they are generally termed. Here we point out simply

the general ideas behind the shock spectrum approach and call to the attention

of the reader how certain information developed by use of the techniques presented

in this report can be used as a starting point for application of the Newmark-

Hansen report.

A shock spectrum is simply a plot of peak displacement, peak velocity, or

peak acceleration of a mass-spring system against the system's natural frequency

for a specific forcing function. If one has available a shock spectrum for a

forcing function input of interest then the peak amplitude of each of the modes

of any linear vibrating system characterizable by normal modes and subjected to

the forcing function can be taken frco. the spectrum if the frequencies of 'ribration

of the modes can be estimated. Further, if the damping of the system of interest

is sufficiently small so that each cycle of vibration is approximately sinusoidal,

the modal motions, displacement, acceleration, and a so-called pseudo velocity,

that very nearly matches actual peak velocity can all be taken from the same graph,

if it is plotted on quadruple coordinate logarithmic paper.

Since the spectrum is merely a plot of peak values of response of mass-

spring systems versus frequency, it is applicable strictly only to linear,

uncoupled sy.tems. Further, if damping is to be considered, the percentage of

critical damping used in development of the spectrum must be the same as tbh:
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percentage of damping of the equipment to be designed with the aid of the spectrum.

Also, in the mathematical sense the peak retlative response spectrum is not

applicable to couple .,ystems or to nonlinear systems. In actual practice the

errors introduced by employing spectra to design systems for which they are not

strictly applicable often are small enough to neglect.

In this report methods are developed for determining the motion on the

interlor of a protective structure in terms of the free-field motion. For large

struct-ires there can be considerable divergence between these. The Newmark-
Hansen report presents approxtte, but quite accurate methods for constructing

spectra from certain cardinal characteristics of the input motion. Thus, by a

two-step processdeveloping first the interior structure motion and then the

spe( um it is possible to cc.,struct a peak relative response spectrum for the

design of shock isolator. reflecting in the spectrum tbe soil-structure inter-

action, structure orientation and free-.field ground shock wave chara- ristics.

The shock spect-um alsc provides a useful tool for evaluation of the effects

intr-duced by simplifications of an analysis. Figu e 1.4 shows a comparison of

the spectra resulting from a step functior -velocity input, and a decaying expo-

nential velocity input of the same peak amplitude. A glance at the spectra is

all that is required to show that if the decay constant. U, has a numerical

magnitude of 1 sec or greater no more than 10 percent error is introduced by

a step wave approximation at isolator frequencies of 5 cps or greater.
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1.3 Equivalent Drop Method

The equivalent drop method is particularly useful during the early stagern

of design for making upper limit estimates of rattle pace requirements and

establishing for a considerable variety of equipment whether or not shock

isolators will be necessary.

The soil particle motion at depth in real soils, due to detonation of a

large nuclear weapon may be quite complex; it will have at least two mutually

perpendicular components of motion and possibly three. However, 'n particulate

soils subjected to air blast the vertical component of motion generally is

considerably larger than either of the horizontal components. For the remslnder

of this discussion, we will focus our attention on the vertical motion component

only, realizing that the conclusions drawn apply 'o the smaller horizontal

components also.

In general, when engulfed by the ground shock wave the soil particle vertical

velocity component very rapidly increases from zero to some peak value and then

much more slowly decreases back to zero. In the subseismic region, generally

below the 100 psi overpressure level for particulate soils, the vertical parti(

velocity may oscillate to some degree. Further, ever. in the superseismic -Bgion

if bedrock is near the surface subjected to air blast, the ground shock wco.:

reflected upward from bedrock may impart a small oscillatory component to the

vertical particle velocity though generally this is of not more than one-half

period duration. The erea under the particle velocity versus time curve Jives

the net vertical displacement of the soil particle.
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These complex motions can be conservatively idealized by considering the

vertical particle velocity to be a step-wave. If it were not for the reflection

from bedrock a surface prticle, under this assumption, would continue to move

downward indefinitely. However, if the reflected wave proceeding upward from

bedrock is assumed to be equal in amplitude to the incident wave, the downward

motion of the surface particle would be stopped at the instant of arrival of

the reflected wave, though the permanent displacement of the surface thbare'y

obtained would be considerably greater than the permanent displacement actually

resulting from detonation of a real bomb. Evidently, this idealization may

considerably over-estimate soil particle motion. However, a step function of

particle velocitv, or velocity jump as it is generally termed, enables very rapid

estimates of rattle space and shock input to equipment.

The peak relative response spectrum of a velocity jump when drawn on the

conventional four coordinate logarithmic paper is just a horizontal line at

pseudo-velocity equal to the velocity jump (see Figure 1.4). Now, if an object

were suspended a certain distance above an absolutely unyielding floor and the

bottom surface of the object parallel to the floor weee made of absolutely un-

yielding material) and the object then allowed to drop and impact against the

floor the shock delivered to the object would be equivalent ti a velocity jump

equal in magnitude to the velocity obtained by tne object falling under gravity

just at the instant of impact. The shock spectrum of this impact then is an

upper envelope of all shock spectra having peak values on the velocity axis

equal to the velocity jump. Thus, from the standpoint of sihock damage to equip-

ment it is possible to conservatively equate overpressure levels, bedrock depth,

and soil parameters to an equivalent drop of the equipment to a hard surface.
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(The horizontal component of shock can be similarly handled except tha~t the

equipment should be envisioned as turned cideways when dropped.) Though the

method is obviously crude it has the important advantage that the somewhat

intangible quantities significant to more sophisticated shock isolation -analysis

axe converted into a pqrameter for which engineers have considerable intuitive

feel. Further, the numerical values of' the equival-ent drop and velcity julap

are surprisingly small. Thus, at the 100 psi overpressure level, in soft soil

having a modulus of elasticity of only 20,300 psi at the 100 psi level., the

eqievalent drop is only 4 inches. It could be included therefore, that most

iaTchinery and ruggedized electronic equipment wotild require no shock isolation

for these conditions. Only very sensitive elements, e.g., a liquid fueled missile,

would be unable to resist a 4 inch drop under gravity to a hard surface.

Even for a sensitive missile isolated by a spring system, the equivalent

drop provides a useful index for approximate determination of the relations between

rattle space, suspension frequency, and acceleration.

The development of the formulas for the equivalent drop approach, includtng

a relaxation of the step function form of the particle velocity to forms mor

nearly duplicating actual conditions are contained in Reference 1.

Graphs of the equivalent drop versus input parameters are included in

Section 7.
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SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

2.1 Conclusions

2.1.1 At the present state of knowledge highly refined shock isolation

design is not justified.

2.1.2 The inherent error, Lue to soil parameter uncertainties, in
+

determination of rattle space for a shock isolation system is at least - 20

+
percent and in some instances may be as great as - 50 percent.

2.1.3 The largest source of inherent error in shock isolation calculations

is due to uncertainty in the stress-strain behavior of real soils at the over-

p1ressure levels of interest. Uncertainties in the values of the propagation

velocities of compression waves, which ultimately hinge on the stress-strain

behavior of soil, contribute tie greatest inherent errors to computed rattl

space requirements.

2.1.4 Theoretical deductions indicate that at "typical" real sites the

second largest source of inherent error rý_ults from uncertainty (or neglect)

of bedrock elevation. (For some conditions this is the largest error.)

2.1.5 Theoretical deductions indicate that field tests carried out at

Frenchman Flat and on the Pacific i Yving Ground cannot provide significant

information or the influence of bedrock at more typical sites. This is due

to the peculiar geology at these test siteq.



2.1.6 The third most important source of inherent error is duc to un-

certainties in energy dissipation (wave attenuation) characteristics of soil.

2.1.7 A haia structure functions as an effective filter of high fvquency

ground shock components regardless of assumed soil characteristics. The maximum

frequency that can be transmitted to the interior is the larger of:

1. The rigid body frequency in soil.

2. The first deformationel mode frequency in soil.

(Note: The second of these may be much higher than the first

deformational frequency in vacuum.)

2.1.8 To within less error than the inherent error of the free field

motion, the interior structure motion can be considered to be the sum of two

components:

1. A rigid body motion equal to the free field particle motion

having a rise modified to reflect soil-structure interactiou;

2. A deformational motion quasi-statically computed but having

a rice modified to reflect soil-structure interaction; the

quasi-static deformation is equivalent to the deformation the

struct,'re would undeigo at any instant if the ground shock

wave were statically applied to the soil-structure complex.

This motion is a function of time but, since it is computed

quasi-statically, it is independent of soil and structure

inertia.
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2.1.9 Theoretical considerations, not known to have been verified experi-

mentally, indicate that shock isolators can be omitted for much equipment in

hard shelters, even at high (1000 psi) overpressure levels.

2.1.10 If shock isolation is required the minimum energy (and generally

minimum cost) vertical system will result if the frequency is chosen so that

one gravity unit acceleration is applied by the system to the isolated equipment

at maximum departure of the equipment from equilibrium.

2.1.11 Ttrz reduction in rattle space achieved by manipulation of suspension

frequency and increase of t,!e-rable equipment acceleration is only a fraction of

the error inherent in determination of rattle space.

2.1.12 It is believed that negative spring systems having natural frequencies

two or three orders of magnitude lower than conventional (- 1 cps) systems can be

developed. A negative spring is defined as any device n5wing a negative force

versus displacement characteristic. The main problem to be overcome in systems

using negative springs is adjustability under varying magnitude and distribution

of static load to maintain constant static deflection. Such systems would be

substantially independent of cross coupling effects between modes, would not ring

significantly after excitation, and would hava only slightly greater energy

capacity, for given stroke, than linear spring systems.

2.1.13 Air springs atid similar systems having concave upward force versus

displacement curves at a given stroke will either

1. Have much larger energy capacity than a linear spring system of

the same stroke and peak acceleration, or
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2. Subject the equipment to a consiCerably greater acceleration

than a linear spring system of the same stroke and energy

capacity.

2.1.14 Theoretir'al considerations indicate that sharp, short pulses of stress

having rise times measured in microseconds can be generated within structu-e and

equipment by tension and co, ression waves propagating through materials having

concave stress strain curves. These pulses can damacýe small, delicate elements

such as vacuum tube heaters and filaments. They can be prevented from reaching

equipment by mounting the equipment on plates or brackets in such a way that all

energy propagated through the bracket must appear at some point as a bending wave

(as opposed to a direct tension or compression wave).

2.1.15 Peak relative response spectra for interior structure motion can be

synthesized approximately by combination of spectra due to simple pulses. The

errors introduced by %,he approximations are considerably smaller than the errors

inherent in the input (ground motion) data.

2.1.16 Shear waves can be neglected in shock isolation design without

introduction of significant error. Neglect of the shear waves is slightly

conservative.

2.2 Recommendations to Shock Isolation Designers

2.2.1 The input motion to the isolator will be the least accurately known

data used in the design. Accordingly, this aspect of the problem deserves as

much meaningful refinement as can be carried out. (See Section 4)
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2.2.2 If equipment must be isolated to a few g then the minimum energy,

and probably minimum cost, vertical system will result if the frequency is chosen

so that - one g acceleration is developed At maximum stroke. For these and other

low frequency systems peak displacement only need be computed. (See Section 4)

The concept of the "shock response spectram" is a useful one in the design

of shock isolation equipment. ',or a detailed discussion of its applicability as

an index of equipment shock damage the reader is referred to Reference 7.

2.2.3 A small component of circulating energy represents a wide swing for

a long pendulum. The circulating energy of a vertical system will be equal to

the product of maximum stroke and equipment weight. Thus, if even a small fractior

of this is coupled to the pendulum the latter can be excited to destructive ampli-

tudes. Therefore, both systems should be damped using Coulomb (not viscous)

dampers and the ratio of vertical to pendulum frequency should be as large as

practical, greater than three and an irrational number. Even frequency multiples

should be avoided, particularly 2. An accurate nonlinear analysis of the resulting

system should be carried out.

2.2.4 In many installations i<olators can be omitted from much equipment.

Section 7 gives a simple method for determination of a convenient coaservative

criterion (equivalent drop distance) for determination of whether isolators are

necessary.

2.3 Research Recommendations

Though the complex problems of wave propagation and soil-structure inter-

action are as yet not understood completely, it i3 evident that existlz•g approximate
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techniques introduce mucb less error into shock isolation calculations than does

the present dirth of knowledge of the Atress-strain beha.ior of real soils at high

pressure levels. Even static test data at 500 to 1000 psi is extremely scarce.

Conceding at the outset that dynamic etfects may modify static data somewhat

and further That the almost infinite variecy of soils will p-eclude ever obtaining

a compendium of precise data it still can be argued that practicelly any factaal

data would place the designer in a better position than he now occupies.

If a designer had available a series of stress-strain rurves with numbers

for real soils he 2,'ruld at least use some judgement in estimating a curve for

other soils and have a degree of confidence in the values of the slope of his

approximation at pressures varying between zero and peak -verpressure.

Accordingly, it is strongly recommended that the following data be obtained

from static and laborat.ory dynamic tests for a variety of real soils:

2.3.1 Stress versus strain curves from confined compression tests in

the range between zero and 500 psi.

2.3.2 Slopes of the hysteresis loops across the entire range of pressures.

2.3.3 Percyclic (or other) damping factors for single high pressure pulses.

mm>9
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SECTION 3

IDM1ERENT ACCURACY
OPTIMUM SYSTEM CHARACTERISTICS

If all of the input parameters of a shock isolation system design were

known with three figure accurr.cy, sophisticated analysis and optimization could

be carried out and nicely engineered suspension systems dr~ve- ped. Regardless

of the accuracy that might be desirable however, the inherent uncertainties in

input parameter values limit the accuracy that can be obtained.

In tlits section the problems of input error and system optimization will

be examined. These will be used to establish limiting acecur- y to be striven

for and to delineate the mathematicP-l complexity necessary to achieve thiL

accuracy.

3.1 Wave Reflection in Real Soils

At most locations within the bounds of continental United States, bedrock

occurs within one or two hundred feet of the surface, though actual depths at

speci-ic locations may vary from zero at Limestone, Maine to srveral hundred

feet in parts of North Dakota.

If bedrock lies below the surface a distance on the order of one hundred

feet, theory predicts that a strong reflected wave will be developed in the

particulate overburden and that neglect or consideration of the reflected wave

introduces an uncertainty factor greater at the lower overpressures than that

of any other parameter even including the square of the wave propagation velocity.
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Considerable evidence has bcon presented however that the predictions of

elastic theory do not appear to occur in real soils. Sauer (Reference 9) points

out that experimental data obtained from nuclear field tests do not exhibit

significant reflections of stress waves. Newmark and Haltiwanger (Reference 6)

state further that laboratory tests on soil with differences in seismic velocity

and density of adjacent layers have yielded similar results. 'The authors of

Reference 7 have concluded, based on the data presented by Muskat and Meres

(Reference b), that the energy carried by reflected waves is relatively unimportant,

on the order of 11 to 15 percent of the incident wave energy. Thus in spite of

the predictions of elementary elastic theory the tendency in shock isolation

design has been to ignore reflections as being a theoretical complication of

considerblbe magnitude yet one that influences results well below the inherent

error in the problem and one that has not been evidenced in actual test data.

In spite of the evidence the author of this )o.'t does not agree with this

philosophy and has not adopted it in preparation of the report.

In Nevada ground motion data have been obtained for only KT weapons. At the

overpressure levels cf interest (> 100 psi) the positive phase duration is on the

order of 1/10 second and the compression wave propagation velocity is about 1500

ft per second. Thus, neglecting all attenuation factors the wave length of the

entire positive phase is on the order of 150 feet.

At the Nevada Test Site bedrock occurs at a depth of 650 feet. The bedrock

seismic velocity is about 10,000 ft. per second. Above the bedrock is an

approximately 450 foot layer of sand and gravel having an average seismic velocity

on the order of 3000 to "" 500 ft. per second; above this is a 200 foot layer of



loess having an average seismic velocity of about 2000 feet per second. Since

the ratio of acoustic impedances of the regions above and below the minus 200

ft. elevation is less than two, a sizeable reflection at the interface, even if

well defined, is not expected. Thus the only sizeable reflection that could be

expected in Nevada is that from bedrock. But the bedrock reflection must travel

a distance of about 9 or 10 initial wavelergths. Thus even a conservative esti-

mate of attenuation indicates that the reflected wave would have an amplitude

less than 2 percent of the initial amplitude.

it iL not surprising that no bedrock reflected wa'.ý is observed in Nevada;

none should be expected.

In the Pacific the surface layer, not more than about 20 feet thick has a

seismic velocity varying from 800 to 4000 ft. per second at water level. Below

the water level a layer about 2500 feet thick has & average seismic velocity of

about 800 ft. per second. Then below this is a layer 5 to 10 thousand feet thick

having a seismic velocity of about 11,000 ft. per second.

At the 100 psi level the positive phase duration of a multi-megaton bomb

is on the order of 2 seconds. At higher overpressures the positive phase

duration increases but the time from peak overpiessure to 10 percent of peak

overpressure decrease . For these large durations the 20 foot surface layer

is just a skin separating the aero-shock from the ground shock wave in the

800 ft/second layer. Thus the wave length of the entire positive phas- 4a the

2500 ft. thick "surface" layer is about 1600 feet; the initial wave length of

the portion of a 500 psi wave between 500 and 50 psi would be only about 500 ft.

for e multi-megaton bomb.



Thus the reflected waves must travel a distance between three and ten

initial wave lengths before appearing near the surface. The low seismic velocity

exhibited is due primarily to the structured, porous nature of the coral island,

and therefore the inelastic damping of the material is very high. If geometric

attenuation and a percyclic damping factor of 0.5 are assumed, even at three

initial wave lengths propagation the reflected wave will be attenuated to about

10 percent of its initial peak value and will. arrive at the surface at least sJX

seconds after blast wave arrival.

We conclude therefore that at the Pacific Proving Ground evidence of "bedrock"

reflec' -d waves should not be expected, particularly at the higher overpressures.

The Muskat, Meres paper c.annot be taken as evidence that significant bedrock

reflections will not occur; these authors did ,ot consider that problem. Muskat

and Meres have limited their data to an interface acoustic impedance ratio of

2.6 (y - in their paper). The elementary one dimensional elastic theory indicates

a reflection having only 20 percent of the incident wave energy at this ratio.

At a soil rock interface occurring within one to two hun, -eet of the surface

the ratio would be more nearly seven to ten. c.. an acoustic- impedance ' .-; of

7 the reflected energy is 55 percent of the inc.de •.xergy. Further, the

reflected pressure is 75 percent of the inc'dent pressure. Surface displacement

is proportional to the pressure.

Another argument against reflections in soil t1:t is sometimes advanced is

that the interface between particulate soil and rock generally is not sharp but

consists of a five or ten foot layer of irregular rock surface, boulders, ce znted

soil, etc. The transition region presents formidable difficulties to analysis

ý3



so it may safely have imputed to it any set of mystical properties desired. The

reflected wave above the transition region consists of the sum of an infinite

set of muldiple reflections and refractions taking place within the transition.

Here we will make no attempt to consider the problem mathematically but

will present a simple physical discussion that clearly illustrates that the

physical effect we generally choose to characterize as a mathematical reflection

must occur in real soils and will have significant influence on surface motions.

Figure 3.1 shows schematically a column of real soil resting upon a

relatively rigid bedrock. Between the two is a relatively thin but finite

transition region.

If a pressure is applied to the surface of the soil and-maiutained, a. -wave

is propagated into the soil column. Physically, the wave represents the distance

within the soil column that is under compression, though the latter need not be

constant within the wave. The compression causes the column to shorten and the

surface pressure delivL-rs energy to the soil tquivalent to the product of surface

pressure and surface displacement. The compression of any element of soil causes

all elements above to move downward. Since the process is continuous all elements

of soil acquire a velocity (particle velocity) which need not be equal for the

various elements. The particle velocity results in the soil column acquiring

kinetic energy.

In most real soils compression of the soil induces some heat. The sum of

heat energy, kinetic energy and strain energy in the column at any instant is

Just equal to the energy delivered by the surface pressure acting through the

distance the surface has displaced at that instant.
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When the wave front passes through the transition region into the bedrock

a number of things can happen. Here we are concerned only with the fact that

some wave does propagate into the rock. The pressure associated with this wave

can be either higher or lower than the applied surface pressure. Hcwever, we

have postulated that the rock be stiffer than the soil; therefore at a given

unit strain a unit volume of rock contains more strain energy than an equivalent

volume of soil. Thus if a unit volume of rock compressed as much as the soil

above had been compressed, energy would be created, an impo7,sibility. We

conclude therefore that regardless of the detailed characteristics of soil and

rock if the latter is stiffer than the soil the unit compression wiln be less

. .thwinthe soil. This argument is independent of the rock-soil transition

characteristics.

Now if the unit compression in tie rock is less than that in the soil the

veloc -y gained by the rock is less than that already established in the soil.

The result is that the soil piles up against the rock, the pileup commencing at

the interface and proceeding to the surface. (This is the reflected wave).

During the pileup the soil particle velocity is reduced to the rock surface

(particle' velocity and the difference in kinetic energy is converted into soil

strain energy and heat. The additional strain in the soil induced by the pileup

causes the sirface to further displace and allows the applied pressure to deliver

moa energy to the column. However, the stress induced in the soil is greater

* than the applied pressure so when the pileup reaches the surface it immediately

moves upward the surface on which the pressure is applied, causing the soil column

to expand and the surface to receive an upward motion component.
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At this point the surface pressure is insufficient to maintain the compres-

sion in the pile so the latter relaxes starting at the sxuface and proceeding

downward. This is the surface reflected tension wave.

Now, it should be evident that a finite transition region between the rock

and soil can affect only the initial details of the process but not the grcjs

results.

If the rock were so stiff that it could be considered with tolerable error

to be infinitely rigid then nearly all of the kinetic energy in the soil would

be converted into strain energy and heat. The "nearly" qualification is used

because for the most real materials all of the particles in the soil would not

.. . . .... 2aneouBy be reduced to- zero velocity. Evidently however, from-physieel ....

reasoning, the residual velocities remaining in particles after engulfment by

the reflected wave must be small. Thus for a first estimate, the surface

displacement induced by the reflected wave would be equal to the displacement

necessary to accommodate as strain energy the algebraic sum of three energy

components:

1. The kinetic energy left in the soil by passage of the

initial compression wave (positive),

2. The energy delivered to the soil by the surface pressure

acting through the additional surface displacement induced

by the reflected wave (positive),

3. The energy lost as heat (negative).

The real blast wave decays with time and consequently detailed analysis

becomes quite complex. However, we cmn make a fair estimate of the additional
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surface displacement by considering the stress strain curve of the soil. In

order to simplify the discussion a nonlinear elastic soil will be considered,

i.e., one that does not generate heat during compression. (Such a soil probably

does not exist.) Since the heat generating process (hysterests) produces

permanent displacement this restriction will not impose unrealistic results.

Fig-are 3.2 schematically shows the stress strain curve of a hypothetical

nonlinear elastic soil. If pressure and velocity variations are not too great

the same curve can be taken as a reasonable approximation of the average stress

versus average strain in a finite column of soil.

Now, consider a column of soil loaded at a constant pressure, p. The

... diMslacement of the -surface is proportional to the soil strain. Thus in

Figure 3.3 the abscissa noted is proportional to the initial surface displacement

for a soil column of fixed length.

The energy delivered to the column by the surface pressure is equal to the

product of pressure and displacement. This is proportional to the area of

rectangle OADE in Figure 3.3. Now the strain energy in the soil is proportional

to the area under the nurve ODA. Therefore, since there is no heat loss in the

nonlinear elastic soil the kineLic energy in the column is proportional to the

shaded area ODE. We emphasize again that these relations would be strictly true

only if the pressure pulse traveling in the soil were a step wave having a clean

shock front. Then the compression would be constant within the loaded column of

soil and the relations described here would be valid. In fact, however, a step

pulse is not conserved in a nonlinear elastic soil. Therefore these relations

are at best reasonable approximations to the true conditions within the soil.
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Upon reflection, the kinetic energy is converted into strain energy causing

the surface to displace an additional amount A B, and the total energy delivered

to the column by surface pressure is then proportional to the area of rectangle

OBCE. If the velocities of all particles simultaneously become zero then this

energy would have to be equivalent to the strain energy proportional to the area

ODFCBA. Thus, for these conditions the shaded area ODE would have to be equal

to the stiippled area DCF, and the ratio of reflection induced surface displacement

AB
to the primary wave induced surface displacement would be equal to the ratio U.

For a linear elastic medium this ratio is just unity. Evidently however,

for the hypothetical soil illustrated in Figure 3.3 this ratio can be considerably

greater than unity. For other stress strain curves it might be less. Computations

are further complicated in a real case because some heat may be developed, a

portion of this heat being reversible and the remainder irreversible. Neglect of

the heat, however, is conservative for design because its neglect implys greater

kinetic and strain energy than actually occur.

There is no doubt that when a decaying surface pressure wave, hysteretic

medium and geometric attenuation are considered, the ratio of reflected wave

induced to primary wave induced surface motion can vary widely from the over-

simplified conditions of Figure 3.3. Our point is that whatever the "exact"

value of the ratio, neglect of this factor in many real instances would introduce

an error or uncertainty greater than the uncertainty in any other parameter

influencing the ground motion problem.

3.2 Suspension Frequency Range

Consider the principal characteristic of the vertical motion of a particle

in the free field. The particle is motionloss until the wave front of the ground
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shock wave arrives. then, due to the rise time of the wave the particle

experiences a rapid increase in velocity to a peak value. The time required

for this to occur is on the order of a few milliseconds. Subsequently the wave

continues to bedrock and reflects, the reflected wave ultimately engulfing the

particle. If the wave had a flat top and reflection at bedrock approached that

of perfect reflection from an infinitely rigid surface, the velocity of the

" article would remain constant during this interval. Tnen at engulfment by the

reflected wave the velocity of the particle would decrease to zero.

because of the departure of real soils from the idealized elastic assumptions-,

the imperfect reflection at bedrock, the decay of the wave subsequent to peak

S..-..res..ne-,• -dieeimpatlon •f--the -ave- .enrgy aa it trasYe_ nLthe!_ fact that not one

wave but a series of waves are actually involved, the general character of the

particle velocity history is somewhat modified. But its overall character can

be represented by

1. A rapid rise of a few milliseconds.

2. A nearly constant plateau followed by a slow decay, the

total occupying a time period on the order of 1/4 second

for large bombs, and deep (100-200 feet) bectrock.

3. A rapid decay through zero to a small negative value.

4. A decaying negative velocity of long duration,

The directly transmitted ground shock component is superimposed on this.

It should be appreciated that the motion of the selected particle is

physically due to the compression of the soil between the particle and bedrock

plus any bedruck motion. Thus since a uniform wave advancing at nearly constant
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velocity compresses the soil at a uniform rate the velocity of any selected

particle above such a wave would be nearly constant.

From the above we can see that the simplest approximation to free field

particle velocity is a vlocity step function. This can be made more realistic

* by imposing a short rise time, a decay rate dependent on bomb size and possibly

soil characteristics, and finally terminati , the velocity pulse at the time

required for the ground shock wave to make the round trip from particle to bedrock

and back to particle. (These assumptions would imply permanent displacement of

the surface.)

If a structure of finite size were immersed in the soii the motions observed

t ... at a p 6oint on the sttucti"e Interior would -differ f rom se inthe freaifr ..

A reasonably proportioned structure (even very unreasonably heavy structures) will

be lighter than the soil displaced; therefore it may be regarded as a captive

bubble in the soil. When engulfed by the ground shock wave the bubble deforms

and reflected waves are radiated from its surface. Depending on structure rigidity

as compared with soil rigidity the reflected waves may either increase or decrease

the interface pressure.

Now it should be evident that at some time subsequent to engulfment the

captive bubble will be"riding" with the surrounding free field. Thus the net

overall effect of soil-structure interaction is to increase the rise time of

structure interior velocity. Roughly, this rise time increase is equal to the

time required for the wave to engulf the structure, a few milliseconds for silos

and one to two tenths of a second for large command centers. Evidently, from the
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standpoint of shock isolation the soil-structure interaction becomes more

important with increasing structure size.

Consider now the basic problems to be faced in designing an isolator. We

will not complicate the discussion by considering damping., inelastic effects,. etc.

The first and possibly most important questions to be answered are "Is any

shock isolation required; does the structure provide enough for this equipmentf"

These questions, we will find, can be the most difficult to answer; here we

assume that isolation is required.

The ultimate isolator would have zero natural frequency thus supporting

the suspended equipment in an absolutely motionless state while allowing the

isolators are very nearly achievable at not unreasonable cost. However, the

rattle space required by such an isolator is the maximum occupied by a reasonable

design (an unreasonable desigrn could increase it). If some acceleration of the

suspended equipment could be tolerated the rattle space could be decreased.

Since Lecrease of rattle space may be reflected as savings in cost of the entire

installation a knowledge of the tradeoff between isolator rattle space required

and acceleration of equipment to be tolerated can be very useuA.

The tradeoff criteria need not be highly accurate. Decrease of rattle space

from 12 inches to 11 inches would not ultimately appear as a dollar savings;

decrease from 12 inches to 6 inches however might justify a reduction in structure

size and be reflected as a real dollar value.

The peak relative response spectrum of the forcing function described above

fairly closely follows che conventional trapezoidal spectrum used in missile
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,ohock isolation design. On the left hand, or displacement leg of the spectrum,

changes in isolation frequency will vary the acceleration suffered by the suspended

equipment but the rattle space required would remain invarient. On the horizontal,

or velocity branch of the spectrum, the product of displacement and acceleration

remains invarient with changes of frequency.

Reference to Figures 2.17 to 2.22 of the Newmark-Hausen report shows that

the "velocity plateau" of spectra for simple pulses of duration td and having the

general character of the ground shock induced velocity extends across the range
Sof t df between about 0.4 to 1.0 and has a maximum pseudo velocity about 1-1/2

times the maximum velocity of the input pulse.

------ Thus If rattle -space Is to be decreazed by- emplvyiiyg a stiffer isolatof .-.......-

system the minimum isolator frequency that could be used would be on the order of

~0.__4
Tmin -- t cycles per s,.-ond (3.1)

d

The peaK absolute acceleration, a, in gravity units would be given by

44 2
2 - z fmin (3.2)g max m

where zmax is peak relative displacement.

Now peak soil particle velocity is given by

p a -(3 .3 )

where

Po is peak overpressure and

Pc is the average acoustic impedance of the soil.

The maximum relative displacement, Zmax, is equal to the maximum soil displace-

ment for the conditions being considered. Thus
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zmax v td = 2t (354)

where D is th factor, somewhat less than one, so chosen that bVtk equals the

area und~er the velocity curve.

Also, the duration, td, is given approximately by

~ 2D (3.5)

where D is the depth of soil between the isciator and bedrock.

Combining these ,pproximations yields

450f3 [P (psi)]

a(g) = [y (pef) j [ D(ft)]

where y, the unit weight of the soil has been substituted for pg.

Now, it should be noted that the three parameters remaining in Equatlonh

(3.6) are those most accurately known, the wave velocity, c, having cancelled

out. Therefore Equation (3.6) gives an excellent estimate of the minimum

acceleration that must be withstood if designs are to be made on the horizontal

branch of the shock spectrum.

If we take

Y = 110 lbs/ft 3

D = ZOOft

S= 0.85

we obtain

P 100 psi 300 psi 500 psi 1000 psi

a 3.5 g lO.5 g 17. 4 g 34 . 8 g
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We conclude immediately that the experience already obtained on hard

installations, which indicates that shock isolation systems are almost univer-

sally designed for frequencies on the displacement leg of the spectrum, is

indicative of design conditions for fut 'e higher pressure installations. Only

small ruggedized equipment ic likely to be installed at the higher g levels.

Thus for most work we will have to use low frequency systems designed for rattle

space equal to the entire soil motion.

Accepting that the systems used will heve to be low frequency maximum input

displacement systems, we ask ourselves if there is an optimum frequency on the

displacement leg of the spectrum. It is fairly simple to show that there is.

For a first order estimate the cost of a spring suspension system is propor-

tional to the weight of the springs provided. The weight of the springs in turn

is proportional to their energy capacity.

Now the energy capacity of linear sorings is equal to one half the product of

the total stroke of the springs and the force developed at total stroke. The

total stroke is equal to the equilibrium stroke ("'static deflection", or distance

the spring compresses when the equipment to be isolated. iE placed upon it) plus

the working stroke.

At the equilibrium position the force exerted by the springs is equal to the

suspended weight, i.e., in proportion to one g acceleration; at total stroke the

force is proportional to ng acceleration, n being the maximum design acceleration

of the system including gravity.
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Denote

U = total spring energy

x = equilibrium stroke

z = working stroke

w weight of isolated equipment

Ft spring force due to total stroke

F spring force due to equilibrium stroke
x

k spring constant

Then

W =F = kx (3.7)
x

Ft = k(x + z) (3.8)

F t x + z
Ft = n x (3.9)
F A.

x
1 12

U 2Ft (x + z) k (x + z)2 (3.10)
1 2

U wxn (3-1)

Now, for a given system w and z are invarient but x depends on the value of

n chosen. Then for minimum energy

* t~UJ(3.12)
2 dx

A dn A
0- n + 2 - x (3.-13)

where
A

n is the value of n

A
and x is the value of x satisfying Equation (3.i3).
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From Equation (3.9)

dn 1 (x + z)2=(3"12)
x

Substituting Equations (3.9) and (3.14) into (3.13)

x + z 2 + z)(

x x

Solving yields

x = z (3.16)

and n = 2 (3.17)

Thus the minimum energy vertical linear spring system vill be obtained if

the spring cor't -ant is chosen so that the equilibrium stroke is equal to the

working stroke. The total aeceleration including gravity on the isolated equip-

ment during passage of the blast wave then will vary between 0 and 2 g.

Since the equilibrium energy of a lateral isolation system can be made

zero the energy capacity of the lateral system can be made indefinitely low by

decreasing the system frequeacy, and cost will be purely a function of the

mechanical devices elected by the designer.

3.3 Available Accuracy

The uncertainty in input parameters limits the accuracy with which shock

isolation computations can be carried out.

If criteria are available for establishing the limits of accuracy available

they can be used to establish the degree of complexity that will be meaningful

in carrying out the computations.
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It is shown in Section 3.2 that, if isolators are required, in the majority

of instances low frequency systems are indicated. In fact, the minimum energy

(and. probably minimum cost) systems have the natural frequency of oscillation

so chosen that the active stroke of the isolator is equal to the equilibrium

stroke.

The period of vibration of a linear mass 3pring system, T, is given by

where x is the equilibrium stroke, i.e., the static displacement.

For the one g system having equilibrium stroke equal to working stroke

= Zx (3-19)

Tax

Substituting Equation (3.5) into (3.4) yields

26pa D1x Z Zmax -- 020

Tnerefore

2'P = -•V(3.21)

Dividing this by the approximate duration of the velocity pulse, Equation (3.5)

= A/ ý (3.22)
td'Y

We note that again the more inaccurate parameters have cancelled out and that

Equation (3.22) therefore gives an excellent estimate of the ratio T/td.

Choosing

/3 0.85

110 lbs/ft 3

D 100 ft, 200 ft
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for

Pa 100 psi 300 psi 500 psi 1000 psi

TD = lO0 ft 4.9 8.5 11 15.4T
td D = 200 ft 3.5 6 7.7 12

We conclude that most systems will be designed by impulse methods requiring

for their input only the peak displacement of the soil. The exceptions would

occur at the lower overpressure levels, systems in structures large enough to

considerably modify the input motion by soil-structure interaction and possibly

systems in which isolation devices were omitted.

Therefore the limiting accuracy available for design of most isolation

systems can be determined by considering the accuracy with which the peak inp#ut

displacement can be determined.

First consider the approximate Equation 3.20.

Zmax 2 (3.20)
pc

The relative error Az/z is given by

Az + p 2& c (3.23)

z( D p c

Now the average value of p will be known to within two or three percent

accuracy if soil samples are taken. The depth D can be measured to within a

couple of feet by seismic means but most likely will vary from point to point

at a particular site resulting in a larger average error. Probably, if the
+ +

average value could be determined to - 5 percent (100 ft - 5 ft) we would have

to be satisfied.
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The average wave velocity, c, reflects the nonlineakities of the stress-

strain curve of the soil, the soil hysteresis, and in Equation 3.20 a" of the

other approximations to the "elastic constants" of soil. (We note that the

denominator of Equation 3.20 is equivalent to the modulus of elasticity of the

soil, possibly the least accurately determinable soil characteristic.) One is

hard put to make even a good estimate of the accuracy with which c can be

determined. However, the seismic velocity, c,, can be measured to two significant

figures. WiJ son (Reference 12) suggests that the velocity of the peak pressure

be taken as 1/2 to 3/4 of the vertical seismic velocity. Accepting Wilsonis

estimate we could take for the compression wave velocity 5/8 + 1/8 of the seismic

velocity of the soil, an inherent error of - 20 percent.

If the overpressure level is in the vicinity of the plateau of the soil

stress strain curve the reflected wave will travel faster than the incident wave

due to the precompression induced by the incident wave. Because of the large

inherent error it does not seem reasonable to attempt to distinguish between

these velocities in computation. Therefore '.t is suggested that, lacking actual

test data the average compression wave velocity be taken as equal to 66 - 15

percent of the uphole seismic velocity recognizing that the error gi'.en is

approximate.

In circumstances where the reflected wave does not add to the incident wave

it is suggested that, lacking test data, the compression wave velocity be taken

as 60 + 20 percent of the uphole seismic velocity.



At the high overpressure levels (> 1000 psi) some accuracy in the calcula-

tions can be gained by making use of the fact that by the time the reflected

wave arrives the overpressure will have decayed to a small fraction of its peak

value.

Maximum surface displacement will occur at the instant of peak reflected

pressure arrival except in the rare instances where soil attenuation is sm great

that a point is reached where rate of attenuation of pressure just balances the

rate of increase of impulse delivered to the soil by the aeroshock wave.

Excepting the latter condition the maximum displacement is given by

= d (3.214)
PC

where

x is the peak displacement

p is the average soil density

c is the average compression wave velocity

I. is the impulse given by

a.D

id f c (t) dt (3.25)
0

D is the distance from structure to bedrock

and V(t) is the pressure iuothe soil including the effects

of attenuation with distance traveled.

Now if 2D/c is a time sufficiently long that it represents a major fraction

of the positive phase duration the impulse Id will be very insensitive to D and c.

From the elementary differentiation formulas the relative error in x is given by

--- + ), (3.20)

52



I dbeing presumed accurately known when formula 3.24 is used.

Now the density of a soil is probably its most accurately known quantity;

the ratio Ap/ pusually can be taken as no more than 5 percenit if the soil at the

site is known. The wave propagation velocity however is known with considerably

less accuracy., particularly at higher overpressures &nd for the more inelastic

soils. Indeed, for real soils it can only be an approximate, average estimate of

a variable quantity of considerable complexity. An estimate of 20 percent for

h/c generally would be quite good.

Thus the percent error in displacement resulting from use of the simple

+
formula and inherent input data error is on the order of - 25 percent.

Some en, ineere -might question the accuracy of the formula because It is .

based on elastic theory and is being used, with appropriate parameter approxi-

mations, for an inelastic medium. They might argue, and quite reasonably, that

for the inelastic medium there is not justification for taking

2
E = pc (3.27)

which is done in the development of Equation 3.24. Instead, they might prefer

to use
Idc

x d (3.28)

which is more primative than Equation 3.24, and estimate an average effective

value of E independent of propagation velocity.

The relative error > x resulting from Equation 3.28 is

Ax Ac AE (3.29)
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Now there is probably no more difficult quantity to measure and estimate

for an inelastic soil than the effective modulus of elasticity. Even with

laboratory tests accuracy better than about - 20 percent is unlikely. Thus by

the use of Equation 3.28 the error in x would be - 40 percent, 50 percent higher

than would be obtained by use of Equation 3.24.
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SSECT.1ION 4

DETERMINATION OF FREE FIELD INPUT

In Section 3 it is shown that an Lrror oL the order of - 20 percent must

be tolerated in the determination of input to shock isolation systems. Indeed,

in many real situations even this accuracy could b•,., obtained only with the aid

of an extensive field and laboratory test program.

It also is pointed out in Section 3 that if shock isolation systems are

i ed they will be low frequency systems. In relatively small structures the I
influence of soil-structurp interaction on system design will be nominal with

a low frequency system. In subsequent sections of this report it is shown that

the accuracy obtainable with existing simplified soil-structure interaction

theories is considerably better than the input error that must be tolerated.

Now, since the actual design of an isolator to resist an established input

can be carried out with scientific precision, if desired, the principal source

of error in the entire design problem is the error in the input.

+7
Inasmuch as errors on the order of f 20 to 30 percent will be involved in a

shock isolator design, a strong case could be made for adopting some simple

convention and be done with it. It can be argued, quite reasonably, that if we

must guess the input we may as well guess the result.

Two counter arguments can be advanced:

1. As a consequence the possibility that shock isolation can be

eliminated from a particular system could not be considered.



2. Such an approach would e- actively stop further progress in

the field of nuclear shock isolation.

Therefore it is believed to be necessary for this report to present methods that

are rational and as accurate as practical within the present state of the art

for determination of the free field ground shock input characteristics. Since

the accuracy level of a given design will reflect the accuracy of the input, this

phase of the shock isolation design problem deserves a greater portion of the

designer's time than any other aspect of the overall problem.

A considerable program in the general area of nuclear blast induced ground

motions is currently being carried out by a number of government agencies and

contractors. Already a substantial literature on the subject has develope. .

However, to date a single consistent theory covering the several elements of

ground .otion ary real soils has not been forthcoming. Even a digest of the

theoretical and experimental data already developed would be of substantial volume

and, because of gaps in the data and internal contradictions would be of limited

value to designers.

In view of this situation the estimation procedures contained in this

section must be regarded as tentative, to be replaced with more accurate proce-

dures as the results of research effort become available. However it is believed

that since a substantial error must be tolerated in any event, a single internally

consistent approach that covers the major influences significant to the shock

isolation problem is desirable. In particular, if the effects of soil-structure

interaction and the possibility that isolators might be omitted are to be

considered in any detail, ground shock inpuit wavt forms are required. Since
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practically all of the published methods for making ground shock estimates are

directed solely toward estimation of the three numerical input parameters required

for construction of a trapezoidal shock spectrum, considerable departure from

these methods has been necessary.

The difficulties inherent in the theoretical prediction of ground waves in

real soils ultimately hinge on the nonlinear, inelastic behavior of the soils.

Propagation velocity, energy attenuation, wave diffusion, and permanent displace-

ment all are primarily influenced by these characteristics.

A procedure for determining the sign4ficanu charaeteristics of the input

wave that requires a minimum of soil data is presented subsequently. T '-a

required are

1. the stress-strain curve of the soil (confined compression test)

2. the seismic velocities of the soil

3. the soil density

4. the percyclic damping factor

5. bedrock depth.

It is assumed that the dissipation process conforms with the percyclic

damping theory. This theory postulates that a sinusoidal wave decays exponentially

at a certain rate per cycle. Thus the fraction of the amplitude that remains

after propagating through a distance of one wave length, as compared with the

initial amplitude of the wave, is a constant and is denoted by e . The theory

assumes that the speed of propagation and the percyclic decay rate for sinusoidal

waves areý independent of wave frequency and stress level and dependent only on

material properties. For a wavef-rn, that is not sinusoidal, the waveform is



represented by a Fourier integral of sinusoidal components, each of which is

assumed to obey the pe-cyclic damping law independently. Each component, having

a different wave length, decays a different amount in traveling a given distance

because it travels a different number of wavelengths. The waveform at any later

time is represented by a Fourier integral of the decaying sinusoidal components.

The percyclic damping theory, though based on artificial assumptions, is

found to agree well with experimental data and has found acceptance by leading

investigators in the field of stress wave propagation. Values cf the logarithmic

detriment,6,ranging approximately from 0.2 to 0.5 have been reported for granular

media. Some typical values are given in Section 8.

The design procedure has been simplified somewhat by making the assumption

that bedrock is infinitely rigid and perfectly reflecting. The combined effects

of these assumptions is slightly conservative. That is, the motions predicted

are somewhat greater than would be predicted if the exact physical characteristics

of the bedrock were taken into account.

Regardless of the energy dissipation characteristics of the soi4 the

momentum of the ground shock wave is conserved as it proceeds through the soil.

Ultimately all of the momentum enters the underlying bedrock. If the effects

of geometric dispersion of the wave are neglected, the displacement of the bedrock

due to the momentum can be computed from the formula

y -(4.1)

where

y is the bedrock displacement

I is the impulse of the ground wave.



Though the waveform may be considerably changed by passage through the soil

and rock, since its momentum is conserved its impulse is conserved and is equal

to the impulse of the overpressure wave.

At the 1000 psi level, for a bedrock weighing 160 pounds per cubic ft. and

having a seismic velocity of 10,000 ft per second, a one megaton bomb would

produce a rock surface displacement of about 1.9 inches, geometric dispersion

being neglected; a 20 megaton bomb would produce a rock surface displacement of

about 5.2 inches.

However, in the bedrock the wavelength of the positive phase from the one

megaton bomb would be greater than 12,000 feet. The initial root of the product

of the two principal radii of curvature of the shock front at the 1000 psi re-gion -. .
J

would be about 7,000 feet, dependent on the soil wave propagation velocity.

Therefore, geometric attenuation would reduce the surface displacement to about

1/4 of the value computed above, or about 1/2 inch for the one megaton bomb and

1-1/2 inches for the 20 megaton bomb. These figures are very small fractions of

the total displacement of soil surface with respect to bedrock. Further, the

soil displacL:Aent computed as a consequence of assumed 100 percent reflection

Prom bedrock more than compensates for these small errors.

4.1 The Input Wave Estimate

Determination of the input waves is carried out in 5 steps:

1. The overpressure wave is estimated.

2. The compression wave propagation velocity is estimated.

S3. The attenuation of the compression wave is estimated.
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4. The compound wave resulting from addition of primary wave and

bedrock reflection is estimated.

5. The vertical and horizontal free field input waves are estimated.

The above steps are considered in order in Sections 4.1.1 through 4.1.5.

Where desirable a brief discussion of the theory is included though in the main

the theory has been described in the references and is n6t repeated-

The reader is cautioned that the methods presented here are approximate

Studies now under way will provide more accurate data on subsurface waveforms.

Bec-ause of the importance of input data accuracy these data should be used for

applicable conditions when they become available.

4.1.1 The Ove ressure Wave

In a series of classified reports Brode has presented theoretically determined

overpressure waveforms resulting from a surface burst. In Reference 2 Brode

presents overpressure data in unclassified form. Figure 4.1 was constructed from

the unclassified data, some extrapolation being necessary at the very high over-

pressure levels. The curves on Figure 4.1 enable a 5 point fit of the overpressure

wave between the limits of peak overpressure and 10 percent of peak overpressure.

The dashed curve gives the subtangent duration, the time at which the

overpressure has decayed to l/e times peak overpressure. If the initial portion

j of the blast wave were a true exponential, the subtangent duration would be equal

to the time interval subtended by the tangent to the overpressure curve at peak

overpressure.
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Within the intervals between the points given in Figure r.I the waveform

can be taken as an exponential, the decay constants differing from interval to

interval. The noteat ion and formulas are given in Figure t a.2.

It should be noted that the first derivative of the approximate curve

Jumps at the transition points. Therefore accelerations should not be computed

from the approximation.

4i.1.2 Wave Velocities

The average modulus of elasticity and, equivalently, average wave velocities

of a real soil contribute the greatest factor of uncertainty to shock isolation

design. The material in this section is presented in an effort to enable the

c dpeigsei to improve hisv etimates. It is emphasized however that no -tyt ha. .

been conducted to prove or disprove the method though data reported for other

purposes do not contradict the approach.

In ordaer to carry out the estimation procedure the data previously listed

are required.

Even if these data are only estimates themselves some improvement in the

accuracy of the input can be achieved over that obtainable by simply taking the

compression wave velocity as 1/2 to 3/4i of an estimated seismic velocity.

Figure 4f.3a schematically shows a stress-strain curve for a sandy soil.

Now, a pressure wave initially of the same waveform as the overpressure wave

would be dispersed in propagating through the medium, that is the peak would beattenuated and would lag behind the "toe" of the wave which would be of zero

amplitude and propagate at seismic velocity c 1 . Between the toe of the wave and
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the maximum the pressure would be continually increasing. Therefore, each element

of the rise would propagate at the instantaneous velocity c* defined as shown in

Figure 4 .3a.

The relation between instantaneous wave propagation velocity, stress, strain,

and density is given as follows:

c*2 = 1 d(4..2)
p de

where

c* infinitesimal disturbance propagation velocity with

respect to particle motion at a pressure

.P = density at zero stress

a stress

C = engineering strain

This is derived frcm contintity and momentum conservation only and is independent of

stress strain laws. It is valid everywhere except at a finite discontinuity of

stress, i.e., a shock front. It should be noted that c* is the propagation

velocity measured in a coordinate syste. moving at the local particle velocity.

Therefore, to obtain the wavefront velocity in a fixed coordinate systam the

particle velocity, v, should be added. This quantity is given by

0  dPC

where

p = density at stres s i

c = wave velocity with respect to perticle velocity at stress G

Evidently, the particle velocity computation is lergthy for a nonlinear soil.
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Since it is small in comparison with c*,less than 5 percent generally, the

computation of c can be greatly simplified with tolerable error by approximating

c = C*.

Evidently, since the pressure peak is continuously attenuated it will

propagate at varying velocity. For the conditions shown in Figure 4 .3a the

peak would propagate with continuously increasing velocity. It should be noted

that although the peak of the wave is continuously attenuated as it propagates

through the ground, at any given point in the soil the presqure continuously

rises to the peak without going through a hysteresis loop. Therefore, the peak

of pressure always propagates at the velocity defined by the stress-strain curve

-envelope ABC.

A pLot of the ratio c/c can be constructed by measuring the slopes of the
1

stress-strain curve and taking the square roots of the ratios of these to the

slope at the origin. Since tne slopes orly are measured and the plotted results

represent the roots of these, the error in the ratio c/c 1 thus obtained is lers

than half of the error in stress at a given strain as given by the stress-stL.in

curve. The dashed curve ADF of Figure 4.4 would yield a velocity ratio curve

practically identical with that resulting from curve ABC.

Since the seismic wave velocity can be measured to within + 5 percent or

better accuracy the compression wave velocity can be estimated by this technique

to within considerably better limits than the t 20 percent resulting by taking

an average ratio.
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Three pressures are identified in Figure 4 .3a:

i. p C the peak overpressure,

2. P a peak attenuated pressure at a buried structure,

3. PBX peak attenuated reflected pressure arriving at the structure.

When these three pressure values have been estimated the corresponding instantaneous

compression wave velocities can be taken from a graph similar to Figure 4.3b. An

average value then can be chosen for computation purposes.

In order to astimate wave attenuation by the method of Section 4.1.3 the

compression wave propagation velocity is required. Thus the method becomes one t
of guess and check. An original guess corrected once should be sufficient to

arrive -at consi-stent propagation veloeity- and wave attenuation ftetoi•s-. .. .. . .

The arguments leading to the estimation procedure given above are valid as

long as the entire ground shock wave lies on a portion of the soil stress-strain

curve that is everywhere convex upward.

If the stress-strain curve of the soil is concave upward the propagation

phenomena are qualitatively changed. Inasmuch as all soils exhibit a concave

stress strain curve at high enough pressure this problem merits some consideration.

Figure 4.5 illustrates schematically a generalized stress-strain curve

ABCDEF. The curve is convex from A to the point of inflection, D, and concave

beyond D.

In general vre should expect that if a wave of amplitude P4 were propagating

into such a material a shock front would quickly form. If the pressure maximum

were preceded by a rising pressure the stresses within Uhe interval of the rise
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time would travel at lower velocities than that at the peak and quickly be

overtaken. Since the overpressure wave has an abrupt rise at the higher over-

pressures we conclude that the sharp rise is conserved in soil if the air

induced ground pressure is above the point of inflection D. We repeat that

all real soils exhibit a concave region similar to DEF at pressures above some

critical level.

Looking at curve ABCDEF one is tempted to conclude that a decaying wave

having a sharp rise would be stretched out in propagating through such a soil

e.g. pressure p 5 in Figure 4.5 closely following peak pressure p. would move

at a slower speed ana therefore the interval pk-p5 wT uld grow with time. However,

the decay of the wave also propagates according to the peculiar laws of such

stress-strain curves and actual physical results diffe-r greatly from this

intuitive conclusion.

Kolsky (Reference 3) and others have investigated the phenomena. The

results of these investigations predict wave behavior that differ markedly

from the intuitively anticipated behavior prese ted in the previous paragraph.

The principal physical effects that result in the qualitative peculiarities

of the propagated wave are two:

1. The velocity of propagatiun of a shocmý front is not given by Equation

(4.2); the derivative is meaningless at the shock front discontinuity.

2. The velocity of propagation of the decaying portion of the wave follow-

ing the shock front is given by Equation (4.2) but the Ldrivative d should be

taken on a hysteresis loop (FG of Figure 4.5) rather than on the envelope.
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The accurate analysis of these phenomena is exceedingly complex and. is still.

under study by a number of investigators. However, if two simplifying assumptions

are ma ý-a method for closely estimating resulting waveforms is forthicuming. One

"simplifying assumption reasonably matches reality. It is

1. The hysteresis loops are shrunk to their centerlines and their

centerlines are all parallel to the tangent at zero stress and

strain. Therefore the propagation velocity on a hyst'"eresis

loop is equal to the seismic compression velocity.

The second assumption may depart considerably from reality. It is

2. The stress-strain curve (ABCDEF of Figure 4ce5) is the Hugoniot

of the soil. At very high pressures this assumption has been

found to be grossly in error for materials having definite,

definable properties. The error decreases as the pressure is

lowered.

The influence of the second assumption will be considered first.

An elementary manipulation of the continuity and momentum conservation

equations results in Equation 4.4 for piopagation of a shock front, if a shock

front exists.

2
(1- E•)• (CF2-Cr

where

G2 and CI are the stresses on the high and low pressure sides of

the shock fro/'i respectively,



C 2 and El are the engineering strains on the high and low pressure

sides of the shock front, respectively,

P is the density at zero stress,0

and U* is the shock velocity measured in a coordinate system

moving with the particle velocity ahead of the shock.

Again, only a small error is introduced if the shock velocity measured in a

fixed system is approximated by U*. Further, the term (1-c 2 )2 generally can be

considered anity without serious error. Actually, this nm is equivalent to.

PO
0 and is equal to 1 if changes in soil density due to pressure are small

p 2

enough to be neglected. Thus a slightly inaccurate but reasonable approximation

for the shock velocity is given by

reasonable approximation for the shock velocity is given by

u2 = 1 (0 2 - 1 )

Now, an arbitrary curve can not be taken as the locus of all p6ints

(C0, 0E), (al, CI), (a 2 , 26) for which Equation 4.4 is satisfied. The correct

curve, termed the Hugoniot, along with Equation 4.4 is satisfied also satisfies

the equation of conservation of energy. If no heat were generated by the

passage of the shock front the static stress strain curve and the Hugoniot would

be identical. However, in any real material heat is generated by passage of a

shock front. Therefore, for real materials, the curves differ.
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However, beyond the near crater region the heat generated by passage of the

ground shock wave is small. Therefore, the assumption that the stress strain

curve is the Hugoniot is not unreasonable. The reader should not be deluded

into believing that this convenient argument indicates that differences between

stress strain curves and the Hugoniot actually are negligible. Possibly the

best counter argument is that dynamic stress strain curves lie between tile static

curve and the Hugoniot. Nevertheless, it is a far better approximation of a

real soil than the homogenious, isotropic, elastic medium of the theory of

elasticity.

Now consider a wave having an abrupt rise in pressure from p1 to P4 (see

Figure 4.5). In view of Equation 4.5 the propagation velocity of the dis-

continuity (shock front) would be c not c Also we note that portions of the
a- f

wave at pressures below pI would be propagating faster than the shock front.

This brings out the first qualitative peculiarity of wave propagation through a

medium having a concave stress strain curve. A shock front is conser-. - but is

preceded by an ever increasing precursor. Also we note that if the shock front

decayed (to, say, p 3 of Figure 4.5) the maximum amplitude of the precursor would

increase. If the pressure decreased to pcr precursor and post shock wave would

merge and the shock would vanish.

Now consider the decaying portion of the wave bebind the shock front. It

follows a hysteresis loop and therefore is moving at higher velocity. Thus the

decaying of the wave overtakes the shock front and the latter is continuously

attenuated. A consequence of the assumption that the wave velocity on any

hysteresis loop is equal to the seismic velocity is that the rarefaction wave



behind the shock front moves at constant, seismic velocity regardless of the

position of the shock front on the stress strain (Hugoniot) curve. Actually,

laboratory tests show that the seismic velocity does not remain constant as

confining pressure is increased. Generally, the seismic velocity increases (e.g.

Reference 11, page 57).

In Section 4.1.3 it is shown that the higher velocity rarefaction wave rapidly

attenuates peak pressure. Therefore the error introduced by setting the "hysteresis

velocity" equal to the seismic velocity has the net result of decreasing predicted

attenuation, an error on the side of safety.

In summary, the shock propagation velocity in a soil having a concave upward

stress strain curve should be as determined from the slope of the secant drawn on

the stress strain curve between the pre-shock and post shock stresses, analogous

to line BF and velocity c of Figure 4.5. Since the peak stress is attenuated
a

by the rarefaction wave the value of propagation velocity will vary with time.

4.1.3 Compression Wave Attenuation

The percyclic damping theory is based on artificial theoretical assumptions.

Its three salient virtues are:

1. It checks experimentally obtained data with excellent accuracy.

2. It is simple to apply, to both theoretical and practical problems.

3. The damping constants for at least a few real soils have been

measured and reported in the geophysical literature. (These are

given in Section 8.)
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The writer of this report believes that designers uill agree with him that

number 3 above is the theory's most sterling virtue.

The elements of the theory are given in Section 4.0 of this ieport.

Weiner (Reference 10) has investigated the influence of the theory on the

one dimensional propagption of simple pulses. The data he reports are directly

applicable to the ground shock problem. Figures 4.6 through 4.9 are taken from

Reference 10. In these figures "n" is the number of initial pulse widths

propagated.

The dimensionless equation for pulse form after propagation of n initial

pulse widths given by Weiner for the initially triangular pulse is

2 6n (6n)2 +21 -l2)tnl 2- 6n .- + (2s-l)

r(s,) = (+2s) tan1 2 2 + log (4.6)7 + (4s _11 T 6n 2 )2
(+ (2s+l)

In the above formula

s = diztaice from center of pulse measured in initial

pulse widths

n pulse propagation distance in initial pulse widths

6 percyclic damping constant (per cycle)

r(s,n) dimensionless ratio of wave amplitude to initial amplitude

at centerline

A plot of the ratio of peak amplitude to initial peak amplitude as a function

of pulse propagation distance is given in Figure 4.10.
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Now, we note that the percyclic damping theory is developed for materials

having a constant wave propagation velocity and we intend to apply it to nonlinear

media having variable propagation velocities. Objections certainly can be raised

but we point out:

1. A more applicable theory of comparable simplicity does not

appear to be available.

2. The percyclic damping theory has given good results in geo-

physical work where the media also are nonlinear.

In the following paragraphs a method for estimating compression wave

attenuation for soils having convex upward stress strain curves is developed,

based on the percyclic damping thpn-y. The attenuation of peak pressure in soils

_having_ concave upward ess-ee straln- curves isso rapidthat a Separate damping

computation would add no accuiacy to the waveform determination.

Figure 4.11 shows a typical overpressure wave constructed from Figure 4.1.

(A 1 T bomb and 500 psi have been used for the construction). The wave is

equivalent to the sum of the triangUlar wave and the "difference" wave showr.

Now the difference wave is of long wave length and any high frequency Fourier

components which it contains are of low amplitude. Therefore it will be attenuatec

only slightly in passing through the soil and the attenuation that does occur will

affect only the point where the trailing edge of the triangular wave joins it.

The triangular wave, on the other hand, has a short wave length, and contains a

large portion of its energy in high frequency components. Therefore it will be

4 attenuated rapidly. We make the approximation that all of the attenuation occurs

in the triangular component of the wave.
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The duration of the triangular wave has been set arbitrarily. However, the

value chosen makes the central angle of the peak of the triangle equal to the

central angle of the peak of the blast wave. Since the high frequency components

of the peak are most strongly attenuated the subtangent duration appears to be

the best choice for the triangular base.

To apply the theory:

1, Determine wave path length from surface to structure and surface

to bedrock to structure. The angle between the paths and vertical

is equal to the Mach angle of the compresolon wave.

2. Determine the percyclic damping constant. Test data should be

Sused-if available; otherwise estimate with the aid of data in . ..

Section 8.

3. Determine the sultangent duration of the overpressure wave

from Figure 4.1,

4. Determine the subtangent length by multiplying the subtangent

duration by the compression wave velocity. (This will be a

guess and check procedure in connection with determination of

the compression wave velocity per Section 4.1.2).

5. Determine n for the direct path and the reflected path.

6. Compute ý_n for direct path and reflected path and obtain7r

attenuation factors from Figure 4.10.

7. Determine the rise time by computing delay from time of

arrival of toe of wave (moving at velocity c!) to time of
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arrival of peak (moving at velocity c). If L is the path

length and tr the rise time

tr = L(I - 1•

r c c

The curve of the rise can be interpolated between the curves

of Figure 4.12 (Figure 4.12 has been constructed from Figure

4.9 by continuing the maximum slope of Figure 4.9 curves to

the "s" axis).

According to the elastic theory lateral motion of a soil particle should

stop shortly after engulfment by the shear wave. Field test records obtained in

Nevada however do not exhibit this abrupt termination of the horizontal yelocity..- -

This behavior can be rationalized if it is assumed that the rate of energy

dissipation of shear waves is considerably higher than that of compression waves.

According to the elastic theory the shear wave stress is considerabY.y lower than

-the compression wave stress in the superseismic region. Thus, if the shear wave

were attenuated at a greater rate than the compression wave its intensity rapidly

would be reduced below the level of the wave anomalies introduced by the nonlinear

characteristics of the soil and the argument based on elastic theory loses its

force.

Now, precise numbers are not available, but it is known that shearing

distortion of particulate soil dissipates energy much more rapidly than pure

compression. Thus, though the Nevada test site can hardly be considered typical

the weLght of evidence indicates that, lacking test data to the contrary, the

shear waves can be neglected in shock isolation design.
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4.1.4 The Input Wave

The input wave determination for convex and concave stress strain diagrams

are considered separately. Specific examples are used to illustrate the methods.

Case I Stress Strain Curve Convex Problem

A structure is to be placed 35 feet below surface; bedrock is 120 feet

below sivrface. The design overpressure is 300 psi and the design bomb size is

10 MT. The seismic velocity is

cI = 2700 ft/sec.

The average soil density is 120 lbs/ft3 . The soil is a lightly cemented sand.

The percyclic dawping factor is estimated (Section 8) to be 0.20.

The average stress-strain curve of the soil is estimated to be as shown

in Figure 4.13. [The soil chosen for this example might almost be classified

as a soft rock. It has been chosen to illustrate how a slightly curved stress-

strain curve can modify ideal elastic results.]

Develop the estimated pressure time curves at the structure for both incident

and reflected waves.

Step 1 - Coan crict the overpressure-time curve (Figure 4.14)

From Figure 4.1

At 300 psi and I M At 300 psi and 10l

P = 150 psi to3 ms t 6 7 ms
0 = 31 ii0 psi50 =0

P = 10 psi t, = 55 t s= 118
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At 300 psi and 1 MT At 300 psi and io0 M•

P = 90 psi t30 = 75 t 30 = 161

P = (0 psi t 2 0 = 137 t20 = 295

P = 30 psi t10 = 360 tlO= 776

Step 2

Construct the c/c 1 curve corresponding to the stress-strain curve.

(Figure 4.13b)

Estimate the propagation velocity. From Figure 4.13b the range of c/c 1

between 100 and 300 psi is about 0.85 to 0.65. Accordingly estimate c to be

c = 0.75 x 2700 = 2000 ft/sec. 4
Step _ 4.

Estimate the wave attenuation. At 300 psi the air shock velocity is

4.8 ft/msec. Therefore the first estimate of the Mach angle of the wave is

S= sin-1 c -i1 L
sn U = sin 1ý7 = 24.60

and sec = 1.1.

The wave path length from surface to structure is about 38 ft. and from

surface to bed-rock to structure is about 226 ft. (see sketch).



------ / •• 4.8 it/ms

24.6

38 ft 3 S/ 35 ft

71 ft tructure

4 -.P 85 ft

654 54 t Bedrociy.-
""7"2 / - " //// i/// / /

The subtangent duration of the wave is (Figure 4.14) 118 msec. Therefore

the subtangent length L Sis aboutS

L = c t =2 x ll8 = 236 ft.
s s

The wave path lengths in terms of the sui tangent length are

for the direct wave n = 38/236 = 0.16

for the reflected wave n = 226/236 = 0.95

and 6n/7r is (6 = 0.2)

6n
for the direct wave -- = 0.01

e6n
for the reflected wave -- = 0.06

q0



From Figure 4.10 the attenuation factors are

for the direct wave 95%

for the reflected wave 71%

Peek attenuated pressures are then

for the direct wave 285 Psi

for the reflected wave 212 psi

Step 5 - Correct Wave Velocity

Entering these pressures into Figurn~s h-I13 a and b wý gee that a better

average for c/c1 is 0. 65. Tiien

c = 0.65 x 2700 ft/sec = 1750 ft/SR.e

Recomputing L, s 1l, attenuation and peek attenuated pressure (see sketch) we

obtain

21.50
37.6 ft 3f

62 ft35f

Structure

67 ft 81.ft
1.75 ft/ms f

68.4068.14"
Bedrock

(~1

I



L n n Attenuation Attenuated Pressure

S T Factor

Direct wave 206w o.18 0.011 95% 284

Reflected wave 206' 1.07 0.07 69% 207

These values check the corrected wave propagation velocity, 1750 ft/sec.

Stp6- Estimate Rise Times

The rise times are computed from

for the direct wave t - 8 _ -8 7.6 ms
r

210 _210

for the reflected wave t =-=42 ms

-Sta 7 - Estizate Arrival Time of Reflected Wave

The distance traveled by the reflected wave from tie time that the structure

is engulfed by the direct wave until the reflected wIIave reaches the structure is

about 158 ft. The toe of the wave,, moving at seismic velocity will travel this

distance in

1587 59 msec.

Step 8

Sketch waveforms (see Figure 4.15).

DetermIne maximum impulse in soil below structure.

Time of impulse s 90 ms
1.75
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The maximum impulse will be the maximum contained within any 90 msec

period. This is determined from Figure 4.15 on the pressure sum curve. The

maximum impulse is shaded. Within the limits of accuracy imposed by our propaga-

tion velocity, peck displacement is given by

I
pC

where

y peak displacement

I impulse (shaded area Figure 4.15)

p soil density

c average wave propagation velocity.

Case II Stress Strain Curve Concave Problem

A structure is to be placed 35 feet below surface; bedrock is 120 feet

below surface. The design overpress.re is 1000 psi and the design bomb size

is 10 MT. The average soil density is 115 lbs/ft 3 . An estimate of the stress-

strain curve below 1000 psi is shown in Figure 4.16

Develop the soil displacement and pressure time curves at the structure

level.

The basic one dimensional wave equation is independent of material stress

strain characteristics. If compressive stresses are considered positive, the

wave equation is
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62Z / O) (4.7)

The method suggested involves a series of steps leading to a plot of - (x)t*

for a particular depth, h, as a function of time between t * and t *, the times

at which the wave front and shock front respectively reach the point of interest

at depth h. Integration of this plot yields particle velocity, ;F)x , during

the time interval to* < t* < t *. A special calculation is required to find

the increase in momentum due to the shock, and the influence of the unloading

portion of the wave can be evaluated using linear elastic theory, since a

constant propagation velocity is assumed in the unloading region.

Step 1 - Construct the overpressure-time curve (See Figure 4.17)

Fi rn Figure 4.1

At 1000 psi and 1 MT At lO00 psi and lO MT

P = 500 psi t50 = 8 .3 ms t50 = 17.9 ms

P=368 t = 15.7 t = 33.9

P = 300 t30 = 21.8 t 3 0 = 47

P = 200 t 2 0 = 44 t20 = 95

P = 100 tlO = 131 t10 = 283
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Step 2

On the soil stress-strain diagram, locate the peak air overpressure and

the critical stress (i.e., the stress below which a shock will not propagate,

where the stresu strain curve has a point of inflection). Also locate the

upper and lower points of several intermediate shocks. These steps have been

carried out in Figure 4.16.

The following results are obtained from data on this figure.

115 - 2x - lbs seec
P=3 x 1728 1.72 x 10 n4

2 104 1000 29 x 108 in 2

C0  1.72 x .0-02 2e2 sec

c= 4500 ft/seQ

Shock Peak Precursor Peak AP AE Shock Velocity, Us

1000 psi 105 psi 895 psi o047 870 ft/sec

750 135 615 .042 762

500 155 345 .032 650

400 175 225 .025 595

300 180 120 .018 515

200 200 000 .000 370

Step

Plot the secant shock velocity as a function of the upper shock stress

level. This is shown in Figure 4.18.
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Step 4

Plot the air blast overpressure on a function of Cot. The plot of pressure

versus c t is the waveform that Oý',oLfd exist in the soil if the entire wave0

propagated at velocity c0. This is shown in Figure 4.19.

Determine the time t* required for the shock front to penetrate a d" 'tance

x. Approximate the shock front velocity auring a time interval At* with the

average of the secant velocities at the initial and final shock pressures for

the interval At*. During the time interval At* the toe of the wave moves a

distance co At* and the shock front moves a distance U At* where U is the
0i ij

ave-age secant velocity between times t*. and t* where

At* = t*_ - t*.j i

Thus during the interval At* the shock front moves backward with respect to

the toe of the wave a distance

(Coti - C0tj) = A(cot) = (co - Uij )At*

distance being represented as c t as used in Step 4.
0

Solving for At*

t. -t.

At* = 1 ,

1 1ij

Co

For ana point of closely spaced time instants t. and t. the corresponding1

peak pressures can be read from the graph of overpressure versus time. The

ratio U ./c may be read from the graph of Step 3. Also the corresponding
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lower shock pressure can be read from the graph of Step 2. Thus a graph of

upper and lower shock stress values plotted against time t* can be constructed.

The data is shown in the following table; the plot is shown in Figure 4.20.

Peak t At Average 1 At* t* Ax x
Pressure (ms) (ms) Shock U (ms) (Ms) (ft) (ft)
(psi) Velocity, U 1 -

(ft/sec) 0ij C

750 9 9 816 1.22 11.0 11.0 9.0 9.0

500 13 9 706 1.19 10.7 21.7 7.6 16.6

400 28 10 623 1.16 11 6 33.3 7.2 23.8

300 47 19 555 1.14 21.7 55.0 12.0 35.8

200 95 48 443 1.11 53.5 10a.5 23.6 59.4

During the interval At* the shock front progresses a distance

Ax. . =C. . At*. .xij = ij •tij

Therefore a graph of the upper aind lower shock stress values can be plotted

against the distance t ie shock has penetrated. This is done in Figure 4.21.

Step 6

Draw the waveforms corresponding to the time t = h/c 0 (the time the

wave front first reaches tne structure) and x = h, and several oter inter-

mediate waveforms. This is shown in Figure 4.22

Step 7

Find the slope of the instantaneous stress waveform at the depth h, for

each time, t*, and plot this slope against t*.
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The particle velocity, P (7t7)x , is the shaded area between toandt*

for t * < t* < t *. This is shown in Figure 4.23.
0 - -- S

Step 8

The velocity after the shock can be calculated from the expression

) =P ( p2 - p + ( j 2 ( 4 .8 )

where

o,= velocity immediately before the shock

£j velocity immediately after the shock

p = mass density (assumed constant)

p = stress immediately before the shock

p. = stress immediately after the shock

sj - j'

6j' strain immediately before the shock

C j strain immediately after the shock

Step 9

During the unloading portion, beginnirg immediately after the shock, elastic

theory can be used, so

- p--pFX~~tP= -PITu~ (4

"' u = I J "

io6
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where

u = velocity during the unloading phase

=jeoiyimdael fe h hc

pj = stress immediately after the shock

P. = stress during unloading

p = density (assumed constant)

c = velocity of propagation, computed from the initial tangent

modulus and assumed constant, thereby implying linear elasticity

4.1.5 Vertical and Horizontal Free Field Inputs

Strictly speaking the vertical velocity would be obtained by multiplying

the velocity curves developed for Cases I and II of Section 4.1.4 by the cosine

of the Mach angle. The Mach angles are small however and this refinement

therefore is smaller than the errors already included in the curves.

The horizontal motion components are more difficult to estimate. It has

been pointed out already that test records diverge grossly from the predictions

of elastic theory; the shear wave does not terminate horizontal velocity as

predicted by elastic theory.

If suspension systems are used we have found that the horizontal systems

should be of low frequency. For this case the only significant input is the

total horizontal displacement.

If shock isolation is not used, dependence being placed on equipment rugged-

ness and the inherent "isolation" provided by soil structure interaction only the

initial portion of the horizontal velocity curve is required. If ruggedized
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equipment can resist the onset of the ground shock wave it can subsequently

t resist the onset of the reflected wave.

The initial horizontal velocity can be obtained by multiplying the predicted

vertical velocity by the sines of the appropriate Mach angles. Since the Mach

angles are small at the higher pressures the resulting velocities will be small.

At some pressure, not yet known, the directly transmitted shock will dominate

the horizontal component of air induced motion.

The total horizontal displacement is equal to the area under the horizontal

velocity curve. However, it must be remembered that the horizontal component of
reflected wave velocity adds to the direct component. In a purely elastic medium

... ithi-perfeet ref-leetion-at bedrock ead no -significant wave decay- the -hori.ntal . .

displacement, xhi, would be given by

21
Xh sin ¢

where

I is the impulse of the aeroshock wave,

Sis the Mach angle of the ground shock compression wave.

It does not seem intuitively reasonable though to consider that after

vertical motion of the structure reaches its maximum (at arrival of the reflected

wave) horizontal motion continues for any length of time. For this motion to

continue, the column of soil between structure and bedrock would have to continue

to shear, a process that rapidly dissipates energy in real soils.

Therefore we take as a reasonable approximation of peak horizontal displacement

z= sin~ z
Zh max v max
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where zh max and zv max are the maximum components of horizontal and vertical

motions respectively. This formula is equivalent to

7C
Zhmax U vmax

where

U is the aeroshock velocity

and c is an average wave velocity.

A value of c can be computed from

Piav

This approximation yields a horizontal to vertical displacement ratio on

the order of 1/3 for Nevada Test Site soil and overpressures in the 100 to 300

psi region.

4.2 Approximate Estimates of Input

If preliminary estimates of rattle space requirements must be carried out

without the benefit of site information it is suggested that the following approach

be used.

1. Estimate bedrock depth from topographic maps. If the site is

unknown guess bedrock to be 150 feet below surface.

2. If the general class of soil (clay, sand) is known estimate

compression wave velocity (see Section 8). If the soil is

unknown guess a wave propagation velocity of 1000 ft/sec.

3. Estimate times required for wave to travel from surface to

structure and surface to bedrock to structure.
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4. Estimate wave decay according to percyclic damping theory. A

conservative value of the damping coefficient, 6, can be taken

as 0.2. (It will be nigher for most real soils.)

5. Estimate the maximum impulse, I, that can be encompassed between

structure and bedrock. This will occur at about the time the

reflected wave reaches the structure.

6. Estimate maximum vertical displacement, zv m from the formula

I
v max pe

7. Estimate maximum horizontal displacement zh max' from the formula

I
Zhmax pU

where U is the aeroshock front vw ocity.

Silos are sometimes founded on bedrock. If the silo shell does not contain

girth expansion joints the silo vertical motion will be equal to bedrock vertical

motion. The latter can be estimated conservatively as follows:

1. Estimate bedrock seismic velocity, c . If bedrock is unknown

guess it to be 10,000 ft per second.

2. Estimate bedrock density. If bedrock is unknown guess the

density to be 150 lbs per cubic foot.

3. Estimate the impulse of the overpressure wave, I.

4. Compute vertical displacement

11
V• max 2 Pcs

The factor: is included to account roughly for geometric dispersion of +he

wave. Its actual value generally will be more nearly 1 or 1/4.

[I



SECTION 5

SOIL- STRUCTURE INTERACTION

A simplified analysis of soil-structure interaction is given in Appendix A.

Even the simplified analysis, however, is quite complex to apply. In this

section the main results of the analysis and estimation procedures accounting

for the principal influences of the interaction will *ý given.

The most important prediction of the interaction study is that the significant

modes of most structures in real soils will be damped near critical; the lower

modes will be over critically d&mped. This then implies that the structure will

follow the soil motion quite closely except within an interval equal snproximately

to the first half or three quarters period of undamped vibration of the structure.

A second consequence of the interaction study is that the rise time for the

forcing functions of the lower modes (translational rigid body ivode and first

bending mode) is on the order of 3/4 to 1 t. res the transit time of the ground

shock wave over the structure. Further, it can be deduced by inspection of

Equations (A-19) and (A-24) (Appendix A) that the initial rates of rise of the

forcing functions for the highei order modes are no greater and generally leas

than the rate of rise of the j'irst oending mode and rigid body mode (the initial

rates oi: rise of these are identical). Very shortly after initial impingement

of the ground shock wave on the structure the rates of rise of the higher order

forcing functions become less than the rates of rise of the rigid body and first

bending mode forcing function. Further, the maximum amplitudes of the higher

order forcing functions decrease rapidly with increase of modal index. (A
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review of Appendix A.4 with attention directed toward the physical meaning of the

quantities involved will make this evident without mathematical manipulation.)

The response of the structure modes to their forcing function also decreases

rapidly with increase of modal index. Thus we intuitively expect that the

significant motion of the structure interior will depend only upon the rigid

body modes and the first few distortion modes.

It becomes a practical impossibility to draw general conclusions from purely

mathematical deductions because of the complexity of the problem. Accordingly,

"a computer program was set up mdJ. the relative responses of the various modes for

"a silo-like structure were determined for a range of parameter variations. (The

computer program and detaileA results obtained are included in the first interim-

report on this project. They are not repeated in this report.)

The results of this investigation indicate that only two modes need be

considered for developable structures:

1. The rigid body mode.

2. The first deformational mode.

An elementary manipulation of the formulas for the soil resistance factor

K and the modal damping factor 6. shows that for reinforced concrete shells the

damping factor for the rigid body mode, 6 r, lies between the limits

S0. 6 <V: 0 < 75- (5.1)

R/h is the radius to thickness ratio of the shell. (For steel shells the limits

of the coefficient a!c 0.33 to 0.42.)

1.,



Thus even for a truly massive concrete shell having an R/h ratio of only 4

the rigid body mode is overcritically damped.

If a structure is so stiff that the first defornatio.;al mode is less than

critically damped the deformation of the mode is insignificant when compared

with the rigid body motion and may safely be neglected.

5.1 Summary of Interaction Theory

The theory developed in Appendix A will be summarized. Since this summary

will be concerned only with the rigid body mode and first deformational mode the

subscripts r and d respectively will be used to denote them. A subscript "i"

will be used to denote a mode in general..

The amplitude, Ti. of the response of the ith mode is given by the equation

2
T. + 261 Q T + i2 T. = T. (5.2)

where

Ti Ls the forcing function for the ith mode, to be defined subsequently

•i is the circular frequency of the ith mode

and 6 is the damping factor for the ith mode.

For the rigid body mode the circular frequency % given by

2 r- (5.3)
r m

and

K P 2 (5_4)Kr r !•



where

m unit mass of the shell

c = soil compression wave velocity

p = soil unit mass

1 = Poisson's Ratio of soil

X = a characteristic length of the shell.
r

The K factor is difficult to estimate. Though the simplified equations

introduce a constant to account for the soil displacement resistance it is in

fact, even for a lineazr, elastic medium, a variable depending upon the medium

characteristics, structure geometry, and manner of loading the structure. For

a spherical shell, which can be investigated analytically, the K obtained for

uniform radial expansion of the sphere is twice that obtained for a rigid body

translation of the sphere.

The average K factor computed for the first deformational mode lies between

these limiting cases.

It is suggested that in actual computation two K factors be used, even

though the derivation of the basic equations is based on a single constant value.

Equation (5.4) is based on the theory of elasticity so it can, at best, be

only approximate for real, nonlinear soils. The characteristic length X is

given approximately by the equation

V 3v (5.5)r A

where

V = structure volume

A structure surface area.
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Equation (5.5) is accurate within the approximations of the theory of

elasticity for spherical shells and any other closed shells so proportioned that

a small, rigid lateral displacement of the shell induces a uniform stress in the

direction of displacement at the soil-shell interface.

If experience computing static foundation displacements can be considered

indicative of the accuracy of Equations (5.3), (5.4), and (5.5) then they must
+

be considered to have an overal_ uncertainty factor of - 50 percent or so.

However, we simply have not enough experimental evidence available yet to Justify

development of more precise formulas.

The Kd factor for the first deformational mode can be taken 50 percent

higher than K rr

Kd = 1.5 Kr (5.6)

For the bending mode

Kd

n2 = W2 +Kd (5.7)d d m

where

- circular frequency of first bending mode in vacuumd

(See Section 8)

The damping factor 6. is defined for both modes

6. = I C (5.8)

1 
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The forcing function, T , is given by

Ni 
1

the norm, Ni, is given by

Ni Mf T i dA, (A.25)
A

and the input vector, P, by

p= n * p + Kz + pc z. (A.19)

In these formulas

A = structure area

S.. .- vector mode

n = normal unit vector

p = free field pressure tensor

z = free field particle displacement.

Evidt any system of solution that retains even the major influences

of these equations is bound to be complex. It is possible though to deduce the

principal influences of the interaction from critical examination of the equations

and to frame a much simpler method of solution that is accurate enough for most

shock isolation computations.

5.2 Simplification of Interaction Procedure

We begin by considering the input vector p1.

Appendix Section A.4 is devoted to computation of pI. Following the method

prec-ented there wt; envivion the structure to be enclosed by an imaginary rectangular
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parallelepiped having two faces parallel to the "plane" of the advancing ground

shock wave. Then the vector p can be represented as six scalar forces perp-Idi-

cular to the faces of the parallelepiped.

For the rigid body motion the forces on the four surfaces that are not

parallel to the plane of the shock wave contribute nothing to the forcing function.

On the two remaining surfaces the scalar pressures p1 can be simplified to:

For the windward surface

Pl = p + c + Krz (5.9)
r

and on the leeward surface

P1 = p - pC2 - Krz (5.10)

where p is the free field wave pressure and i is the free field velocity. The

free field displacement z can be obtained by integration of the ý curve.

At any instant pcz is equal to p. However, in order to carry out the

interaction computations an average value of pc must be chosen. Since the shapes

of the p and ý curves may differ markedly the distinction between the terms has

been retained.

For the deformational mode the Jcalar pressures on the four parallelepiped

surfaces perpendicular to the ground shock wave are

P1  - op (5.11)

where

o is Poisson's Ratio.
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Now let us examine the result of evaluation of the forcing functions Tr

and Td. The vector mode 0r consists simply of a unit vector in the direction
d r

of the advancing ground shock wave. Therefore its scalar projection on the

windward face of the parallelepiped is simply +1 and on the leeward face is -1.

Thus if the transit time of the wave moving over the structure were small and

the rate of decay of p1 not too great, after engulfment the forcing function Tr

would be given to a very close approximation by

T (pci + KrZ) (5.12)
r

For the rigid body mode

A 1 (5.13)l i in ii

r

so

T - (Pc + K z) (5.14)
r mr

We note also that since T. is an integral over the surface of the structure,

peaks and steps will not appear in T.. The abrupt onset of pressure cannot be1

applied simultaneously to the entire surface of the structure or even to a major

fraction of the surface. The effect of the integral is to smooth out irregularities

within an interval equal to the transit time.

Since the component of T contributed by p cancels out at any time when the p's
r

on opposite sides of the structure are equal, the only contributions of p to the

"forcing function occur when there is a rapid change in the magnitude of p within

an interval equal to the transit time. If such rapid changes exist they are

averaged over the transit time interval and make small contributions to 'r r
r
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At this point it is of interest to compare the transit time with the period

of vibration of the rigid body mode. For a horizontal cylinder the transit time

t. is given by 2R
tt M- (.5.15)

The period of vibration, tt, of the rigid body mode is

t = 27Tr (5.16)

For a cylinder, this is equivalent to
-- =~~tr 27C (h)1/2 c -l/

- -- ,g,(1-• -- (5'.17)

Thus the ratio tr/tt is

tr hl/23 1/2

-t 2

where(+) --

h m shell thickness

R = shell radius

I IC shell density

Y Hi isoil density

1" = Poisson's Ratio of soil.

nor a concrete shell and a Poisson's Ratio of 0.3

. r = (h (.9/2J.-•--t tt R g ( .

Thus for a cylindrical shell having a radius to thickness ratio less than

25 the transient time is less than a period of vibration in the rigid body mode.

This mode is overcritically damped. Therefore variations in the Tr Qur¢t will

not sLrungly Influence the resulting response curve. Accordingly, the influence
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of p on the rigid body mode can be neglected and only the z and I components

considered.

In accordance with the approximation uJready adopted (Equation (5.6))

Equation (5.7) can be rewritten

2 2 2d= d + 1.5 a (5.20)
r

Substituting the expression for C2d (Section 8) and

(LC2cc2 1 i Y R c 2
1F + ''lh-+R (5-21)

d 5 R1 R' RBa 'Yc

where

S = soil density

c = shell density

c
c c = sonic velocity uf shell material

and other symbols are as previously defined. Then the ratio td/tr becomes

t_ =(h)1/2

t d ( s R (h' (5.22)
r (c)+ .5 c 1 h 2

(c 2 c !)3]

Taking for a concrete Ehell

c= 11,000 ft/sec

S= 150 lbs/ft 3

c

and for soil

c = 1500 ft/sec

115 lbs/ft
3

0.3
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td .4.1 (Rl/ (5.23)
tdR I

The damping factor can, after some manipulation, be expressed

R stL (S-) 3(3(5.24)

These have the values

R/h 4 7 10 20

td/tr = 0.22 0.38 0.51 0.71

d o.118 0.355 0.68 1.88

Examination of the table shows that for some possible values of(R/h) the

damping of the first vibrational mode is considerably less than critical.

However, we note also that for these cases the period of vibration is only a

fraction of the transit time and therefore the response will closely follow the

input.

The vector mode idis symmetrical. Therefore, the velocity and displacement

terms cancel out except when these have a rapid change of value within the interval

of the transit time. Even these rapid changes will not markedly influence the

resulting response curves.

Taking *o to be 0.3 the forcing function rd becomes after engulfment

T 0.27 P (5.25)•d m

During the initial half of the engulfment time all three components will

contribute to both forcing functions. Therefore, if the initial rise proves to

be significant it is suggested that the amplitudes of r and-rd be computed at
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1/2 tt reflecting the three components. Smboth curves starting at zero, passing

through the computed points at 1/2 t t and smoothly merging with the vdlues actt

then can be sketched.

It is noted that if Equation (5.2) is divided through by 2 , then the

t2e has the dimensions of length and at some distance from the origin

will represent the termina. displacement that the damped response asymptotically

approaches. In this form the relative importance of the rigid body and deformational

modes can be easily judged.

Then, subsequent to engulfment, the equation for the rigid body mode

forcing functions becomes

r -3(+A) v + z (5.26)Sa2 c A
r

where

v structure volume

A structure surface area

0 = Poisson's ratio

c = average compression wave velocity

z free field particle velocity.

Now the expression

3(l+u) Xv

is of the same order of magnitude as the structure "radius" regardless of

structure complexity. Thus the first terr) of Equation (5.26) is approximately

equal to

c

L2.
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From a typical example it can be shown that the maximum contribution of

the velocity term to the displacement is on the order of 1 inch for a 30 ft

diameter cylinder and 1500 ft per second soil. The maximum displacement is about

18 inches for tlte same structure; thus the velocity term contributes a displace-

ment increment only 5 percent as great as the soil displacement term, z.

The deformational motion is more diff zult to investigate because the

modal geometry Td varies between structures. For a horizontal cylinder the

equation becomes

Td 0.27 g p R (5.27)

2 c '

For a reinforced concrete sheil of R/h 7.5 and c = 1500 ft/sec, the t3rm in

brackets becomes about 0.66. Therefore

d _ Pp) [in] (5.28)
f22 1000

for a 30 ft diameter shell.

This is a small displacement in comparison with the rigid body displacement.

Another fact emerges, however, that is of practical importance. The displacement

indicated by Equation (5.27) is almost exactly the displacement suffered by the

structure surrounded by the soil and statically loaded.

In Section 5.3 a simplified design method based on these observations is

given.
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5.3 Simplified Design Method

It is again pointed out that this design procedure is necessary only if

isolators are to be omitted or if the more desirable and economical low frequency

systems are not used. A method for determining when isc'ators can be omitted is

given in Section 7.

The interior structure motion consists of two components:

1. A rigid body motion T r

2. A deformational motion Td

The rigid body motion is the solution of Equation (5.29)1

T 26
r r T + T z (_5.29~)
r

where
-2

2 Pc A
91r -3(l+1T,)mV

r

2 6 r ( + ) 3

r c A

and

z = free field displacement

m - structure mass per unit area

V M structure volume

A M structure surface area

p - soil unit mass

c = average compression wave velocity.

S.. . .. . . .. :• . . . = = = = . . . . . .• •.•i~12,5



If tt is the transit time of the ground shock wave over the structure and

tr 2 T (5.30)
r

the response Tr will be practically identical with z after a time period t*

where

t*= tr + tt (5.31)

If necessary T can be determined within the interval
r

0 < t < t*

by solution of Equation (5.29)

The deformational motion can be approximated by Equation (5.32)

Td 3V
d _+-0 )=- Td+ Td =z (532)

cA d(dr

where

2 2 d+ .5 g22 (5 -33)

d = circular frequency of structure vibration in vacuum

z static deformation of structure in soil under the

imposed pressure.

Fou computing z the actual soil p 3sure at the structure depth should be

averaged out within an interval equal to the transit time tt.t

The net interior structure motion, T, is then

T=T + Td (534)
r dr

One of many methods for solving Equations (5.29) and (5.32) is given in

Appendix B.
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In this section the pressures and velocities used have been the net values

acting in the direction of soil particle motion. These are the appropriate

inputs for "floating" structures completely surrounded by soil.

If a structure founded on bedrock is used, e.g., some silos already built,

only the horizontal component of motion need be considered. The equations of

this section are valid for the horizontal component if horizontal pressures and

velocities are used as inputs and if substantial vertical motion is prevented

by the bedrock.
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SECTION 6

NONLINEAR SYSTEM

Nonlinearities of shock isolation system must be considered from two

standpoints.

1. All real systems contain nonlinear elements even though for

practical design purposes we may simplify the analysis by

"linearizing" the systems. In most instances the errors so

introduced are of no practical importance and, therefore,

the procedure is perfectly acceptable. However, occasionally,

the nonlinearitiec introduce qualitative clanges in the

behavior of the real system which are of sufficient importance

that they must be considered in the design.

2. For various reasons it may be desirable to deliberately design

nonlinear isolation systems in order to gain specific advantages.

The theory of nonlinear vibrations is extremely complex and still in its

infancy. Further, by far the largest portion of the work already carried out

understandably has been directed towards solution of steady-state problems since

these comprise the largest proportion of nonlinear problems of practical importance.

Because the principle of superposition cannot be used for the solution of nonlinear

mechanical problems the variety of existing steady-state solutions are of very

limited value to designers interested in the transient response of nonlinear

systems. No analog of the Duhamel integral exists for nonlinear vibration

problems.
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At the present state of our knowledge no general, well developed theory

of transient nonlinear vibration exists. The mass of theory and data available

is directed toward solution of certain specific problems or of problems that

can be characterized by certain specific nonlinear differential equations.

Further, even at best, application to particular problems of the methods that

have been developed is generally quite tedious and time-consuming and, if

carried out analytically, almost invariably requires the use of a high speed

computer.

It was believed that no purpose would be served by burdening this report

with a compendium of solutions and techniques for analyzing specific nonlinear

problems. Determination of the effects of nonlinearities on nearly linear

systems is appropriate to the refined final design of shock isolation systems

which is not within the scope of this report. However, preliminary design of

nonlinear systems that might be used in lieu of the more conventional linear

types is within the scope of this report. Therefore, on the project some effort

was expended to develop criteria that would point out the advantages or dis-

advantages of nonlinear systems under particular circumstances and to develop

methods to expeditiously determine rattle space requirements, acceleration limits,

etc. for nonlinear systems. An attempt was made to do this for the general non-

linear system as opposed to cataloging specific types of nonlinearities.

Obviously, the results presented are far from complete even for cases to which

they most strictly apply. Again we emphasize that the purpose of this section

is to afford the designer fairly rapid methods that he can use to expeditiously

establish limits for the important parameters of rattle 3pacc requirements and
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peak accelerations to which the isolated body will be subjected. Evin more

important, perhaps, is presentation of means by which he can determine whether

a nonlinear system has any clear cut advantages or disadvantages over a more

conventional linear system.

V Nonlinear systems can be characterized in a number of ways. In this

section we will find it convenient to regard the isolator as an energy storing

device. Two general classes are considered:

1. Conservative systems in which all the energy delivered to the

isolator by mechanical motion and stored within the isolator as

potential energy ultimately is released by the isolator as

mechanical motion. A conservative system is the nonlinear

analogue of undamped linear isolators.

2. Nonconservative systems within which a portion of the energy

delivered to the isolator by mechanical motion is dissipated

as heat or otherwise and is not subsequently released as mechanical

motion, the analogue of damped linear isolators.

6.1 Conservative Nonlinear Systems

Consider a single degree of freedom nonlinear isolator. It can be symbolized

by the scheme shown in Figure 6.1. The problem is to determine the displacement

x(t) and the force F(t) in terms of the known input z(t) and the isolator

characteristics. A variable y(t), corresponding to the rattle space, is defined

y(t) x(t) - z(t) (6.1)

Note that y(t) is defined positive for a decrease in the space between the mass

uid Lhe isolator support.
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Now, regardless of the mechanical complexity of the isolator, if it is

conservative, its mechanical characteristics can be represented by a curve

similar to Figure 6.2 if the mass of the isolator is taken to be zero. If the

masses of the isolator elements are considered the curve of Figure 6.2 broadens

somewhat, the amount of broadening being proportional to the ratio of the kinetic

energy of the masses to the potential energy stored. This condition is roughly

analogous to a spring-mass system having a spring so heavy its mass must be

included in the analysis. Even for the linear system this greatly complicates

analysis. Therefore, in this section the mass of the isolator will be presumed

small enough to neglect.

For the massless isolator the force developed is equal to the derivative

of potential energy, i.e.,

dE
F -- (6.2)

Assume now that the isolator has been placed on its support. Its compression

y and potential energy Ep are zero. Then as the supported mass is gradually

lowered on the isolator it compresses an amount y, stores potential energy Ep

and develops a force F.

At equilibrium the force F must be equal to the weight mg.

Figure 6.4 illustrates two differing energy-displacement curves and their

resulting equilibrium positions. A practical value of nonlinear systems is

immediately evident. The equilibrium energy of system 2 is much smaller than

that of system 1 for the mass chosen. Now as a first approximation the cost of

an isolation system is roughly proportional to the equilibrium energy. Therefore

14 "12
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if system 2 were of the some order of mechanical complexity as system 1, it

would be considerably cheaper than system 1.

We also note that if the two systems were designed so that

_7 d 2E
- =(6.3)

were nearly equal and constant within the stroke range R centered on the

equilibrium position the systems would be nearly linear within R and of the

same freque•¥y. A bi-linear system such as system 2 could be designed for a

protective structure by making R equal to twice the relative displacement

taken from a shock spectrum at frequency

A close approximation of the rattle .pace requirements can be quickly made

using the E versus y and F versus y graphs.
p

The time required for the vertical component of structure motion to reach

its maximum is about equal to the time required for the ground pressure wave to

travel from the structure to bedrock and reflect back to the structure. Now,

generally, the structure will be within 100 feet of bedrock and the ground

pressure wave propagates at 500 to 1000 ft/sec. minimum. Thus the time to

maximum downward displacement of the structure is on the order of 250 msec. or

less. The magnitude of the structure displacement is given with fair accuracy

by

z (6.5)max PC

t* 2D (6.6)
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where

l(t*) - impulse of blast wave (ground wave)tetween

time zero and time t*

D - Depth of bedrock below structure

S= Soil compression wave propagation velocity

p - soil mass density

As soon as the floor of the structure begins to descend the isolator begins

to expand and deliver some of its stored energy to the floor and soil below.

In expanding the force, F, exerted against the mass decreases somewhat so the

mass begins to descend, thereby gaining kinetic energy due to ite velocity and

losing potential energy as measured in a motionless coordinate system. However,

the potential energy of the mass with respect to the floor increases because

the floor descends faster than the mass and therefore the mass rises with

respect to the floor.

Since isolator systems generally are of long period (a second or so) and

maximum vertical displacement of the floor occurs generally in less than 1/4

second, as a first approximation we can assume that the mass remains motionless

during floor descent to maximum. Then, if necessary we can correct for initial

mass motion.

If the mass remains motionless during floor descent a distance Az the

isolator opens an amount - Ay and the potential energy of the mass, with respect

to the floor, increases an amount mg9y.

f13



Figure 6.5 shows normalized Ep versus y and F versus y curves for a hypotheti-

cal system. The curves have been normalized by dividing both Ep and F by the

weight of the isolated mass. The rest position is indicated by point A on both

curves. Now, if the floor instantaneously dropped a distance Az the isolator

would expand a distance -,&y and the energy stored in the isolator would decrease

from point A to point B on the E/mg curve. However since the potential energy

of the mass with respect to Gae floor increased an amount mEy the total energy

in the mass-isolator system, measured with respect to the floor would be equivalent

to that at point C.

Now, since we have postulated a cinservative system, the total energy of

the system would remain constant if the flooi suffered no further motion. However,

point C is not a position of equilibrium because the force represented by point M

is less than the weight of the isolated mass. The mass therefore begins to

descend losing potential energy and gaining kinetic energy. Also the compression

of the isolator increases so the isolator gains energy. During the motion the

potential energy of the mass would be represented by line CH, the potential plus

kinetic energy of the mass by curve CJH and the potential energy of the isolator

by the curve BAD.

At the point of maximum displacement the mass would be motionless and the

kinetic energy zero. Therefore the loss in potential energy of the mass would

be just equal to the potential energy of the isolator. Thus point D, at maximum

displacement can be established by projecting line CD at 45?, point D being the

intersection of the line with the isolator energy curve.

j iI2
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if point n and point D are connected wih a straight line the ordinate

between line BD and curve BAD is the kinetic energy of the mass at the corres-

ponding displacement, y.

The period of vibration of the system, T, can be obtained by integrating

the reciprocal of velocity.

Thus

T f d (6.7)B E k 1/2

For a real system the floor does not descend instantaneously; a time we

have denoted t* is required. During time t* the mass descends slightly and

gains kinetic energy Ek

If we approximate the descent of the floor as a linear function of time

during the time t* and, further approximate the arc MA on the force versus y

curve by a straight line the loss of potential energy, AEm, is given by

AE 1 AF t*2g (6.8)

m-- ( )(t* g) (6.9)

and the gain in kinetic ener-y by

= 1 rF) 2t2 (6.10)

k F m

AEk=_ 1 ma2 2
; -mg-(6



We note that both of these corrections will be quite small for real condJ-

tions similar to those illustrated in Figure 6.5.

Figure 6.6 reproduces the energy curve of Figure 6.5 and illustrates a

method for correction for t*.

Subsequent to time t* the floor of the structuxe will rise. However, since

the rise is due to the decay of the groand pressure wave the rate of rise is

slow, a second to several seconds depending on bomb size. This rise ,ill modify

somewhat the response of the system but the slow rise alternately adds and

subtracLs energy from the oscillating system so the net change over a period of

time is small. In any event, for a forcing function of small duration with

respect to the system period, neglect of the rise is on the conservative side,

i.e.. ymax is greater for no rise.

An alternate method o. plotting the energy curves may be preferable for

actual design purposes. In Figure 6.7 curve (A) is the normalized isolator

strain energy curve, analogous to curve BAD of Figure 6.5. The static equilibrium

position of the ua&" is at the point where the slope of curve (A) is unity. Curve

(B) is the normalized mass potential energy curve and curve (C) is the total

potential energy curve, the sum of curves (A) and (B).

Since the system is -onservative the sum of potential and kinetic energies

must remain constant, and can be represented by the horiz0ntal line (D). The

difference between (C) and (D) is the kinetic energy of the mass. Points (1)

and (2) for which the kinetic energy is zero are points of extreme relative

displacement between mass and foundation.
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The rise time correction can be made by computing - and - frommg mg

Equations 6.9 and 6.11. Then the normalized increment of total energy is

A E 6E M 11Ek

mg mg mg

This can be plotted as shown on Figure 6.7. Then the range of mass motion

with respect to the floor is between the limits of points l' and 2' on the graph.

Should it be necessary to determine the response of a nonlinear system

to a forcing function having a duration of a quarter period of more one has

little recourse otr ,r than to carry out a step-by-step nume-ical solution. For

a complex syq+ian this is best done with the aid of a digital computor.

6.2 Nonconservative Nonlinear Systems

If the general conservative nonlinear system shown schematically in Figure

6.1 is modified to include energy dissipative elements it can, with perfect

generality, be represented by Figure 6.8. In Figure 6.8, Ic represents an

energy storage device having the properties of a conservative isolator. Block

Id represents an energy dissipative device. No energy communicated to Id is

returned to the syst% r' " ? •'•'-7. always resists the motion y regardless

of whether y and its derivatives are positive or negative.

It may not be apparent that any nonconservative single degree of freedom

system, regardless of its complexity, can be represented by a scheme as simple

as Figure 6.8. Energy is a scalar variable. In classical mechanics all energy

components of a system are linearly related. Therefore all conservative energy

components can be lumped, if we so choose, and all dissipative components can

also be lumped.

I I III
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It is pointed out, however, that the forces Fc and Fd probably would not

exist separately in individual physical members.

We denote the energy stored in isolator Ic by E . The curve of F versus

y can be deduced from the physical characteristics of any real system. It

simply is the energy within the isolator at position y with all time derivatives

of y zero. The Fc versus y curve is then simply dE PC/dy.

No energy curve analogous to Figure 6.2 exists for the dissipative element;

energy dissipated depends on the history of y and its derivatives as well as

their instantaneous values. However, the Fd curve does exist but is much more

complicated than Figure 6.3. Fd, in many real system is a function of at least

y and k. It may depend also on V , the absolate acceleration of the $kol&tor.

For instance, the friction against an unlubricated shaft turning in a reamed

hole would depend to a degree upon the acceleration force exerted by the shaft

against tht hole. Each element of a complex system would have t separate time

dependent position coordinate so that if we attempted to lump them into some

generalized coordinate, w, as shown on Figure 6.8, w would be a function of' x, z,

and all of their derivatives.

If the mass of the isolator can be considered small enough to neglect in

comparison with the supported mass, m, then the force Fd is a function of y and

Sonly. The dissipative force can be quite accurately approximated by a function

of k only for many real systems.

Because the energy dissipated during any particular time interval is a

function of the previous history of motion the tezhnique of Section 6.1 cannot



be extended to cover the dissipative case. This is because the simplicity of

the technique is due ultimately to the fact that only the terminal points of

motion are ised. If the technique is extended to account for the effects of

intermediate velocities and displacements it loses its simplicity.

If it were necessary to consider damping for an impulse excited nonlinear

system the simplest approach would be to use the phase plane method which is

well presented in the literature*. Actually, for a system of a fair degree of

complexity probably the best procedure would be to program the problem for a

digital computor.

Unless the nonlinear system is quite heavily damped acceptable design

estimates of rattle space and acceleration can be obtained by neglect of the

damping altogether and the method of Section 6.1 used. These conditions

generally will be true for the low frequency systems used in shock isolation of

sensitive elements of hard systems.

Since ground shock isolators are invariably subjected to an initial high

velocity ý shortly after onset of the ground shock wave (within several milli-

seconds) velocity sensitive dampers should not be used; they would communicate

a high pulse of acceleration to the isolated equipment. Coulomb dampers, however,

are insensitive io velocity and further have the desirable property that the

force applied to the isolated equipment can be made nearly constant.

A Coulomb damped nonlinear sysbem proportioned so that the ratio of energy

d4 ¶sipatea to circulating energy for the first, or largest amp-itude cycle of

*See, for instanoe, "Introduction to NoIilTauxr ivichanies", FT. Minorsky,

J. W. Edw-rds, Ann Arbor.



vibration, is 10 percent, will apply a' force to the isolated element at least

10 percent of the peak conservative element force Fc but less than 20 percent

of the peak force F c. Even for a linear conseirative element £c (spring) the

peak force ratio generally is less than 15 percent.

Such a system would ring through no more than ten periods following the

decay of the ground shock wave.

6.3 General Consideration of Nonlinear Isolation Systems:
Their Advantages and Disadvantages

An important advantage of some nonlinear systems was pointed out in

Section 6.1; for a given supported weight the equilibrium energy of a "bi-linear"

type system can be much smaller than an equivalent linear system having approxi-

mately the same frequency of perturbations about the equilibrium point. Stated

another way, a truly bi-linear system needs far less energy capacity at a given

frequency and excursion range than does a linear system of the same frequency.

A second advantage of Coulomb damped systems discussed in Section 6.2 is

that reasonable damping of the ringing of the system following ground shock

excitation can be obtained without the consequent high accelerations that would

be communicated to the isolated equipment by velocity sensitive dampers. Further,

Coulomb (constant dry friction) dampers (e.g., brake drums) are probably simpler

and more reliable than any other.

The characteristics of nuclear blast induced ground motion are such that

below a certain vibration frequency the excursion of the isolated mass (rattle

space) remains constant. (This is represented by the left, displacement, branch



of the shock spectrum.) However, as the frequency of the system is reduced, the

acceleration of the isolated mass is reduced and, per',aps of more importance,

the kinetic energy delivered to the mass is reduced proportionately. Therefore

its tendency to oscillate after the ground shock wave has passed is reduced.

In Section 6.4 some practical systems that can be built to support sizeable

masses at frequencies two or even three orders of magnitude lower than the 1 c',-;

range of most present hard isolati-n systems are briefly discussed.

The disadvantages of nonlinear systems, with one notable exception, are

three.

1. The mechanical complexity of nonlinear systems generally is considerably

greater than that of linear systems.

'> The mathematical problems in designs of nonlinear systems are quite

formidable as soon as the single degree of freedom elements are departed from.

Even for the elementary single degree of freedom systems the computations may

require a digital computor for any other than impulse loading.

3. The coupling between elements of a complex nonlinear system can be

very strong, introducing detrimental motions to the isolated element as well as

grossly complicating the analysis.

The exception mentioned is the Coulomb damped mass-spring system. Its

mechanical complexity is generally less than that of any other damped system

and its reponse to an arbitrary input can be determined by simple graphical

or numerical techniques (Reference 8).

I 4y



6.14 Negative Spring Isolators

If the slope of the energy curve of Figure 6.2 became negative then the

force of Figure 6.3 would become negative and within the negative region the

isolator would have a variable negative spring constant.

A toggle provides a simple physical example of such a device. Figure 6.9

schematically shows the force-displacement curve for a toggle. It has a sub-

stantial negative spring region centered on the snap through position. Further,

by proper design a nearly linear region of about 1/3 h (see Figure 6.9) can be I

obtained.

Negative spring devices are not limited to toggles Any energyt

device having a negative energy versus displacement curve following an initially

positive curve has a negative spring characteristic. Mechanical devices can

consist of cams sliding against loading rollers, (Figure 6.10) the rollers being

loaded by any appropriate means. Note also that by preloading the cam followers

the lower portion of the cam can be truncated.

A negative spring connected in parallel with a positive spriri having

nearly the same spring constant (slightly higher for stability) yields a spring

system of substaantial energy capacity but practically zero spring constant at

the operating range (Figure 6.11).

Reference 5 describes a negative spring system actually installed that
-6

isolated a ten ton suspended mass to 10 g.
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The principal adverse criticism of a negative spring system is that it

is bulky. However it is believed that with sufficient design effort the bulk

could be greatly reduced. If this conjecture proves to be true they would

then provide particularly desirable elements for hard installation shock

isolation. The only input parameters required are stroke and suspended weight.

(Even for the toggle system the suspended weight can be varied within l1its

for any particular isolator and still. maintain the frequency at near zero).

In operatioi, the isolated mans moves only minutely; therefore no signi±ieant

kinetic energy is gained by the mass and there is no coupling between isolation

elements nor ringing subsequent to ground shock excitation. The isolated maT.

remains at 1 g vertical throughout +he attack.
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SECTION 7

IS01 AMTOR ELIMINATION

The possibility that isolators can be eliminated from the system when

ruggedized equipment is used should be checked.

Any criterion for isolator elimination must be approximate; variations in

equipment characteristics are too great to allow development of an accurate

general method. It is believed that the method presented here for development

of a criterion for any particular installation, though quite conservative still

will serve to indicate that isolators can be omitt-d in. many• pecfic natance-

Before proceeding with development of the criterion an aspect of the shock

isolation problem that has not been touched in other parts of this report will

be considered.

It is a matter of experience that certain peculiar effects take plece in

a true shock environment which theory is hard put to explain. For instance it

has been observed that if a large charge of explosive is detonated under water

and close to a ship, though the ship structure and machinery may suffer no observable

damage, certain brittle elements are destro>ed. The ship may be left undamaged

but in darkness because the filaments of incandescent lamps are broken.

In an attempt to "explain" these phenomena, Weiner (Reference 10) postulated

that such damage is caused by very sharp rises of stress, rises occurring in one

or two microseconds. Though, to our knowledge, Weiner's predictions and conclu-

sions have not been tested, his hypothesis, if accepted, does account for many

shock peculiarities.



Further, We.ner shows that ccnvent.ional shock tests would not disclose such

equipment weaknesses because thE -ise times of the tests are too long. In addition,

Weiner points out that many materials used in construction have concave stress-

strain curves and that sharp pulses would be generated.

His report also points out that if the sharp rise postulated is the reason

for failure of small, more delicate elements of equipment then such damage can be

prevented by a simple technique: mount the equipment on brackets so constructed

that no stress can be communicated from input to equipment by any path that does

not include a flexural element. Weiner showed thtL Lhe postulated damaging pulses,

though propagated considerable distances as tension or compression waves, are

-attenuated to the vanishing point when propagated as bending through- • adistance

of one or two beam thicknesses.

Now the required "beams" could be simply wall brackets made of bent plates

and having elements in three mutually perpendicular planes. Most bent plate

brackets would qualify.

In the followinR development it is assumed that sharp spikes of stress

developed inside the structure and mounting equipment are avoided by use of

simple mounts, or brackets, so constructed that there are no direct compression

or tension paths between equipment and input; somewhere along the line all re-

actions are resisted by bending moments. It imposes no great hardship on the

designer to specify that the natural frequency of any bending element in the

bracket be no higher than 500 cps.



In brief, the criterion for elimination of isolators is expressed as an

equivalent drop to a hard surface. As is repeatedly .nadvertently demonstrated

in electronics laboratories, even sensitivw test equipment can withstand a drop

of a few inches to a hard floor. On a simple bracket or flexible mount much

equipment can stand a drop of two or more feet.

The question is "How high a drop correspoLds to the interior motion of a

hard shelter?"

This question can be answered with fair accuracy by the five following steps:

1. Estimate the free field motion as accurately a& possible in

accordance with the methods of Section 4.

2. Estimate the resulting iaiterior structure motion ir accordance

with the methods of Section 5.3. Carry out at least a rough

solution of Equations (5.29) and (5.32) to obtain the early

history of interior motion.

3. Using the Newmark-Hansen Report (Volume III of this report) sketch

the peak relative response spectrum for a combination of simple

pulses that approximate the early history of interior structure

motion obtained in Step 2.

4. Determine the peak pseudo velocity from the spectrum. Denote it

A
V

max

5. Compute the equivalent drop, Xeq, from

i max
Xeq 2 g

where g is the gravity constant.
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No exact rules for the maximum drop that can be withatood by various items

of equipment can be given. A typical value of maximiu interior velocity is 4 ft

per second having an equivalent drop height of only 3 inches. Most of the

equipment in a hard structure could resist a drop of 3 inches without damage.

It may be desirable to have available a rough, conservative estimate of the

equivalent drop. This can be obtained for vertical motion from Figures 7.1

through 7.3. The eqivalent drop for the horizontal component can be taken as

the product of the vertical drop and the tangent of the Mach angle of the

compression wave.
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SECTION 8

DETERMINATION OF INPUT PARAMETERS

Even though some of the input parameters entering into the ground shock

isolation problem can only be estimated it is necessary in order to carry out a

design to have firm procedures for making the estimates. In this section formulas

and data useful in making these estimates are compiled. An attempt has been

made to simplify some of the formulas at the expense of theoretical accuracy.

The accuracy remaining however is more than is generally significant in View

of the inherent errors in input data.

8.1 Simplified Structure Frequency Formulas

Notation

f = frequency of vibration [cycles/sec]

ifn frequency of vibration of nth mode ýycles/sec]

n = modal index [dimens.4onless]

c sonic velocity of shell material [ft per set]

h = shell thickness [t]

R shell radius [ft]

f = distance between circumferential nodal lines [ft]

0 - half central angle of arch kadians]

All frequencies of vibration are computed for structures vibrating in vacuum.

8.1.1 Domes

For all modes c(81)
f - R



8.1.2 Circular Cylinders

For all extensional (breathing) modes

f- - ' -ci I Il.

For deformational (bending) modes having no circumferential nodal lines and

free ends f h(

~n ~ [n2+Ij' 2 R~) 2(8.2

These modes have 2n longitudinal nodal lines.

For deformational modes having circumferential nodal lines spaced a distance

fr f f 1 + ] 2n2_l)(n2_l) + n2 2 +6 ( R)2 2 (8 .3)

f is computed by Formula (8.2).n

8.1.3 Circular Arches

For deformational modes having no circumferential nodal Jines and free endsifn= 24 n2+)1/21) R T-

(rn+) 7

wherc

r n g U(8.5)

These modes have n nodal lines between the spring lines.

For deformational modes having circumferential nodal lines spaced a

distance

r- 2 27r
Bnt, [ -]2 (B2}(61n + --/~l) jj~l(Pn2 2 + 2,7[R,)2~

-- nIn2-) 1 i' -1)(Fn -1) +] I' = + 6(IT) (8.6)

f and p are computed by formulas (8.) and (8.5) respectively.



8.1.4 Rectangular Slabs

For bending modes having nodal lines spaced at "a" in one direction and

spaced at '"b in the perpendicular direction

f = Tr ch [2+ 1 (8.7)
43 [a2  bJ

or f = Tr ch d (8.8)
4F3 A•

where i is the rectangle diagonal and A is its area.

8.2 Normal Mode Geometry

Unless for some reason a detailed analysis of an interaction problem is

to be carried out the normal mode geometry will not be required. If such an

analysis is to be carried out the modes can be obtained for most structures from

the literature.

If the method of Section 5.4 is used modal geometry is not required; the

statically computed deflection is used instead.

8.3 Soil Parameters

8.3.1 Bedrock Elevation and Material

These data should be obtained from borings. If not available they can be

estimated from topographic maps. If these are not available estimate bedrock

to be 150 ft below surface and having a seismic velocity of 10,000 ft per second.

.1 ý ,



8.3.2 Stress-Strain Parameters

If at all possible a confined compression test stress-strain curve should

be obtained from soil samples.

If a design must be carried out to be applicable to a number of unspecified

sites assume an "'elastic" soil weighing 100 lbs/ft 3 having a compression wave

velocity of 1000 ft p,-r second, and a percyclic damping factor of 0.25. (The

latter number is quite conservative; a more realistic value would be 0.35.)

If a minimal description of soil conditions at a site is unavailable, elastic

theory and the following approximate values can be used.

Soil Type Approximate Density Approximate
Compression Wave

Velocity

Top soil light 100 lbs/ft 3  650 ft/sec
dry or -jist
loamy silt

Clayey top soil, semi- 100 lbs/ft 3  1200 ft/sec
consolidated sandy clay,
nubble or gravel,
loose rock talus, wet loam

Cemented sand, 100-110 lbs/ft3  2000 ft/sec
sand and clay

Saturated consolidated clay 120 lbs/ft 3  3000 ft/sec

8.3.3 Percyclic Damping Factors for Real Soils

The following values have been extracted from the geophysical literature.



Material Percyclic Damping Factor

Fine sand and silt 0.21

Course sand 0.35 (0.25-0.50)

Clay 0.25

Shale O. 043

Limestone O.047

Sandstone 0.060

Granite 0.030



APPENDIX A

DEVE1OPMENT OF MOTION-TIME METHOD FOR DISTRIBUTED SYSTEMS

A.1 Statement of the Problem; Method of Approach

Assume a position in the free-field and the time history of free-field

pressure at tle selected position. The time history is presumed to include all

effects that influence the pressure waves arriving at the selected position,

such as, the incident compression wave, the incident shear wave, the directly
4

transmitted wave, and any reflected or defracted components of any of the

foregoing waves. In this section a method will be developed for determination

of the motion-time history of the interior of a structure placed at the selected

position in the free-field. The word "method" in the previous sentence is

underlined to emphasize that a general procedure is developed, not a reries of

formulas to be applied in specific instances. The method presented admits of

gross approximation or of application to problams deserving of a high degree of

accuracy for which an electronic digital computer would be necessary to carry

out the computations. Thus, if only the free-field compression wave can be

estimated with any degree of accuracy a solution can be obtained within this

degree of accuracy. On the other hand, if site conditions are sufficiently

well known so that all of the pressure components stated above are known within

tolerable accuracy then this information can be reflected in the computed interior

structure motion, if desired.
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A difficulty with all engineering methods, and a difficulty that becomes

more pronounced with ir -easing generality of the methods, is that they must be

understood for their successful application. It is not enough merely to determine

which numbers should be substituted into a series of formulas in order to compute

a resulting number desired. For this reason in the following subsection the

mathematical expressions used will oe developed in considerable detail and the

emphasis will be placed upon the physical meaning of the mathematical expressions

used. This is considered to be very important because in actual application most

of the precise mathematical expressions will be approximated by their physical

counterparts. The ease and facility, therefore, with which a given degree of

accuracy can be achieved in the results will hinge, to a great extent, on the

thorough understanding of the processes used by the designing engineer and- good

intuitive estimates of the accuracy of approximatiorns used.

The general methods of mathematical applied mechanics are so well understood

that their application has become almost standardized in technique amounting, in

a sense, to something of a cult. Without meaning to disparage the considerable

mass of :cellent solutions that have been obtained by this approach it is pointed

out that sometimes the formal mathematics tends to obscure the physics of the

problem being investigated. The development of the next subsection, in particular,

does not approach the problem in the classical manner. Considerable physical

insight is gained by this departure from custom.

A.2 The Differential Equation

Consider a linear, elastic, statically loaded shell structure*. Its

* Since shells are the structures of interest this development is carried out in
terms of shell characteristics. Appropriate modifications render it applicable
to any irinear, elastic structure.
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equation can be represented

D L (-) -= (A.l)

where If

D is a scalar constant

u is the absolute vector displacement of a point on the shell

p is the vector pressure at a point on the shell

L(u) is a linear vector operation, a function of u and its

spacial coordinates. Equation (A.1) can be taken as the

definition of L(Th).

It should be appreciated that the pressure vector p of equation (A.1)

includes the forces that we normally term reactivw in other words, if the

pressure p was summed over the entire structure the resultant would be zero,

and the moments of the pressure p summed over the entire structure must be zero.

The following elementary examples are included to fix the meaning of the linear

vector operator and the circumstances under which the vectorial nature of u and

p become significant.

For a flat plate laterally loaded the analog of Equation (A.1) is

D V2 V (T1)

where

2 Laplac.an operator

1 Eh 3

12



E modulus of elasticity

h M plate thickness

1 W Poisson's ratio

It should be observed, however, that since the displacement and pressure

vectors are in the same direction over the entire surface of the plate, the

vector character of displacement and pressure do not contribute anything

significant to this particular problem and therefore they might as well be

written as scalars (as they usually appear in the literature). If the flat

plate were of nonuniform thickness then the equation would be

1 E

12 (1--0 2••+
T- V (u) =p

For an inextensible circular arch of central angle 20 and radius R the

analogue of Equatiun (A.1) is
2 2{ 2 d d + 1 )

dO dO

dO-

where

El is the stiffness of the arch

p is the vector pressure per unit length of rib.

Now)for the arch

u- •+uo
U = ur

where n and A are unit vector:. in the radial and tangential directions

rerspective Ly.



Also, for the inextensible theory

dr du -V

Since each component of the vector displacement must satisfy the differential

equation

EI_T L (u8) -

R

EI dun
L Pr

where

p pr n + pe

we see that, although the vector L(u) must be colinear with the vector p, in

general the vector u is not colinear with p. Physically the situation will

arise for any structure that, under the influence of a concentrated load, moves

laterally with respect to the load.

Equation (A.1) is not sufficient in itself to determine an actual deflection

even though the loads are given. It only expresses the relation between the

deflection at one point to that at another. In order lo get absolute values for

the displacements we must prescribe a set of boundary conditions to the problem,

i.e., a set of points where the displacements, moments, shears, or slopes are

zero. The complete set of equations for a particular problem then consists of

Equation (A.1) plus the appropriate boundary conditions.

It is well to emphasize at this point that for any particular problem an

equation analogous to (A.i) always exists but it Way IU LoC compIex mathemati 1 ly



to use or even to write. An example of an essentially simple physical system

that does not have a tractable equation analogous to (A,1) is a steel building

frame; however, the general concluV ens that can be drawn by operating with

Equation (A.1) are applicable to the steel building frame.

The equations of free vibration of the above system in vacuum are then

(damping neglected)

D L (u) + mu = 0 (A.2)

B (u) = 0 (n=l, 2,...) (A.3)
n' '

where

m is the unit mass of the shell, a function of the spacial coordinates

Bn( ) are the boundary conditions

,' is an index denoting the individual boundary conditions.

Equations (A.2) and (A.3) can always be solved in the form

u , A. -. sin (P t - . (A.4)
i~l 1 1

where

A. are arbitrary constants1

and 0 are arbitrary phase angles

are a set of orthogonal vector functions of the spacial variables only,

satisfying the boundary conditions and the orthogonality relation

f 7 J m dA 0 ... if i # j (A.5)

AA 1 JI(A5

= N. ... if i= J.
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The area integral is taken over the entire surface of the shell.

The N are constants, termed the norms, of the orthogonal system. Then

the circular frequencies, ca)i satisfy the relations

i2 (A.6)

The physical meaning of Equations (A.4) th- •ugh (A.6) is that any steady

state vibration u can be represented as the sum of an infinite number of rather

special displacement configurations, ' vibrating sinusoidally at specific

frequencies Mi) each frequency being related to the associated displacement

configuration by Equation (A.6). Particular d.placement configurations, u,

are obtained by adjusting the values of the arbitrary constants Ai and e

Physically it is by no means obvious that this situation should be true.
2

If we regard ai in Equation (A.6) as simply an arbitrary number then certainly

the equation could be solved for some function We might make a guess as to

the general shape of T, substitute it into the linear operator, divide by mW 2i

and obtain a better approximation for 0." If this procedure were carried out an

infinite number of times we would expect to find some particular displacement

configuration satisfying Equation (A.6) for the particular value of Ci used.

In this manner Ti could be generated for any arbitrary value of wi; however, it

would be found that only those functions i corresponding to certain particular

values ofay would also satisfy the boundary conditions. We would still have

an infinite number of i left satisfying the boundary conditions but this infinity

would be smaller than the nunber that did not. A fairly long mathematical

developiment then shows that any two functions -i and j satisfying both Equation
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(A.6) and the boundary conditions also satisfy Equation (A.5)*.

Evidently since the geometry of the •i are influenced by the boundary

conditions this influence is reflected in the associated frequencies of vibration

ci" Thus if two structures identical, except as to boundary conditions, were to

be placed in steady state vibration the vibrations of the two structures might

be markedly different. The most familiar example of this situation is the

difference in vibrations between a hinged end and a fixed end beam that are

otherwise identical.

Since the element of mass, m dA, is always positive it can be concluded

from Equation (A.5) that in general a and will have positive and negative

portions, otherwise their product would not average out to zero over the_ surface

of the structure. In most treatises on orthogonal functions the functions are

considered to be scalars rather than vectors and to be functions of one independent

variable only rather than two required for a general description of a shell

structure, the two dimensional functions for the shell being represented as the

product of two one dimensional functions each of one of the coordinates of the

shell surface. Such one dimensional functions and two dimensional functions

comprising a product of two one dimensional fimctions have a series of nodal

points or nodal lines, i.e., points or lir.es at which the value of the function

is zero. For the two dimensional case the nodal lines divide the function into

a2ternate positive and negative zones somewhat similar to a checkerboard. As

the index number, i, increases, the number of nodal lines on such modes increases

also.

* See, for instance, Air Force Special Weapons Center Technical Report TR-59-2

"Protective Construction", T.G. Morrison, Part III (U).



The vector functions - in general do not exhibit this characteristic.

The scalar value of the vector displacement is always positive or possibly zero

and, in general, if the vector is resolved into its comnonents, at a point where

one component is zero the other components will not be zero; therefore, the

vector modes do not have clearly defined nodal lines. The components of the

modes, however, do have nodal lines but the nodal lines of, say, the radial

component and the lateral component of the vector modes of a circular cylinder

occur at different positions. This observation is quite important when setting

up the technique for numerical evaluation in a later secbion.

If the structure is subjected to a dynamic load p then the equations of

motion become

B n (-U) = O. (A.7)

Equations (A.7) have a solution in the form

u = Z T. (t) Ti (A.8)
u~l

where Ti(t) are the solutions of equations of the form

T, + W, 2 T. = T.(t) (A.9)

The functicns . arc gin "c' by

t N 1 f 2 d A. (A-10)
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In subsequent sections considerable space will be devoted to methods for

computing the value of T i (t). It is worthwhile, therefore, to get some feeling

for the physical significance of this expression. Since the dimensions of p

are pounds per square inch, the dimensions of i are inches, and those of dA are

square inches, the integral in Equation (A.10) simply represents the total energy

that would be delivered to the 0i mode by the pressure P if the pressure were

held c.nstant and the mode allowed to move from a position of zero displacement

to its maximum. Thus, the product NiTi(t) represents a time varying function at

any instant equal in value to the energy that could, at that instant, be delivered

to the mode by the pressure function p.

We will now set up the equation of motion of the same structure immersed in

an elastic medium that offers resistance to motion of the imbedded structure.

We will denote the absolute motion of a particle on the surface of the structure

by u. the absolute motion of a free-field particle by z, and the relative motion

of the structure with respect to the free-field by w. Thus,

The medium, in general, offers three components of resistance to motion of the

structure. These will oe discussed in some detail.

The first component we will term the aiTIk nt sensitive component.

Consider a cylindrical shell immersed in an elastic medium. Now, if the shell

ie uniformly expanded outward against the elastic medium a pressure will be

developed by the medium against the shell at the interface, this pressure being

proportional to the amount of outward expansion. In a truly elastic medium if

the shell were bonded to the medium a tension would be developed at the interface

A- 10



if the shell were uniformly compressed inward. The proportionality constant

for both the compression and tension cases would be the same. Now suppose that

the shell was nonuniformly expanded outwards against the elastic medium. Then

the interface pressure developed would vary from point-to-point and woula be a

function not only of the elastic constants of the surrounding material but also

of the geometry of the deformation. In general, we could write

k F(V) V -d (Q,11)

where

-d interface pressure due to relative displacement of

structure with respect to free-field

7F(w) - a dimensionless function of w .. . .

k = a proportionality constant.

For the case of uniform expansion or contraction, previously discussed, the

dimensionless function F(w) would be identically unity.

The relative motion of the structure with respect to the free-field, w,

can, in general, be resolved into three components, one of these normal to the

surface of the structure and two more mutually orthogonal with each other and

the normal component but tangential to the surface of the structure. The latter

two components could be combined into a single tangential component, the direction

of which, in general, would vary from point-to-point around the surface of the

structure. We will denote the normal component V . n and the tangential component,

w * where 3 is the unit vector normal to the she' and 7 is the unit vector

tangent to the shell and lying in the plai. defined by n and w. Now in a truly

elastic medium two components of pressure are developed at the interface due to

A-li



the time derivative of these components of motion. The normal component of

pressure which we will denote P is given by

Pvn
Pvn " 3 Al• w . n (A.12)

and the tangential component is given by

Pve 2ciP Lw • (A.Z3)

where

cI is the compressional wave velocity

c2  is the shear wave velocity

p is the unit mass of the medium

Equations (A.12) and (A.13) are independent of ýe stress strain law and

"are accurate for any materia1 if the instant-aneous-wave velocities--are -used-1 -- ....

Practically, their principal value is for materials having constant wave

velocities (elastic, viscoelastic, etc.). It is pointed out that these equations

are written only for the interface pressures developed and do not represent the

time history of the waves radiated from the structure which ultimately result

from the interaction.

If the structure were not present in the free-field but the position

occupied by the structure was engulfed by a pressure wave, the mathematical

.U1...QC defin-"6 t*t,-Ao interf•ce would be subjected to a component

of pressure, the free-field pressure. In a solid medium, elastic or otherwise,

the free-field pressure cc~n be represented by a second order tensor. We will

denote this free-field pressure tensor ;. On any surface arbitrarily described

within this second order tensor field the vector pressure on the surface, which
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we will denote by p, is given by

where n is the vector unit normal to the surface.

Now if an actual structure is immersed in the free-field, the vector pressure

at the structure-medium interface is equal to the sum of the four components

enumerated above. The pressure component that we ordinarily regard as the

reflected wave or the doubling of free-field pressure against a motionless surface

is simply the sum of components p and p due to the relative velocity of structure

and free-field particles. For equilibrium this interface pressure must be

balanced by two _pressure components developed by the structure:

1. A component due to the deformation of the structure, which

we have symbolized by DL(u), and

2. The inertia of the structure, mu.

Thus the equation of motion of a structure immersed in elastic material is

DL~u+mun.~kF- --1pn - ~~v1 7 (A.15)

The minus signs appear on the right side of Equation (A.15) because for an

inwardly directed pressure to be developed at the interface due to struct're

deformation the deformation u would have to be positive inward. Since u is the

sum of the free-field motion and relative motion w, a positive w would repre-

sent a icendency for the shell surface to separate from the free-field particler

yielding a tension stress or negative pressure.

Suhetituting w = u - z into Equation (A.15) and rearranging we obtain
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DL(u)+kFwu+cP~.i + c~p 7 T + 5u

(A.16)

+kF(w) +C 1 P nz n +c c z.2

With the exception of the term k F(w)_z the right side of Equation (A.16) is a

function only of the free-field pressure, free-field particle motion, and

structure geometry. Therefore, with a suitable approximation for F(w) the

right side of Equation (A.16) is computable from initial data. We, therefore,

define p,

P n + k F(w)z+ cp n z n* + c~o I z- (A.17)

It is instructive to observe the form taken by Equation (A.16) for certain

limiting cases. Consider, first, that the soil motion and structure response

are so slow that the process becomes quasi-static, i.e., all time derivatives

become zero. Then we see that the interface pressure would be just the sum of

free-field pressure and a component due to the distortion of the soil around

the structure, induced by the disparity between free-field motion and structure

motion.

If the struc'.ure were a rigid, immovable, flat surface parallel to the

advancing wave front then DL(U) would vanish, z would be equal to u, and

would be equal to zero. It is not apparent, but for this case the function

F(w) would be zero and also the dot product z • would be zero. Then since z.

the particle velocity, is just equal to P for a plane wave, the right side
PC

of Equation (A.16) would become simply 2p as it should for this condition, the

2 representing one hundred percent reflection.

A-14
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Equation (A.16) is extremely difficult to solve. The term kF(W)-u renders

the equation nonlinear. Also, the two first derivative terms having different

constant factors c1 and c2 mitigate against the use of a normal mode solution

even without the complication of the nonlinear term. At this point, then, there

would be two general courses open to us. One, we could insist on a mathematically

rigorous solution and carry out the evaluation of Equation (A.16) by means of a

large digital computer; two, we could simplify Equation (A.16) and perhaps carry

out the evaluation by simpler means. When we consider the degree of uncertainty

that must exist for the several parameters entering into Equation (A.16) the

latter course seems to be the most reasonable to adopt. A rigorous solution of

a problem for which the input data is prolbly accurate to no better than a

factor of ten or twenty percent yields only illusory accuracy in the final

results. However, we must be careful in simplifying the equation that the

elimination of a complicating factor does not change the qualitative behavior

of the system and that the simplifications do not introduce numerical inaccuracies

greater than can be tolerated.

It will be found that the nonlinear term has small influence on the net

response of the structure. Actually, it contributes only a small incremCnt to

the "spring constant" of the structure, by far the larger portion being contributed

by the factor DL(U) for most cases. The sjrr-l. exception occu•s for rigid body

motion of the strvur1-':t- in which case the linear opzrator contributes zero. But

for this case the function F(w) is identically unity. We will, therefore,

approximate the nonlinear term by the linear term Ku and develop rational methods

for estimation of an average value of K to use for any particular structure.

A
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The velocity terms are a little more difficult,. to handle. We begin by

determining graphically the meaning of the sum of the two velocity terms. We

note, first of all, that c 1 is always greater than c 2, generally, on the order

of two or three times as great as c 2. Figure A.la shows the graphical construc-

tion of the vector representing the sum of the two velocity terms. It is seen

that in general this sum will have a numerical magnitude different than that

of z and that the direction of the resulting vector will differ from z. In

Figure A.lb the two wave velocities c 1 and c 2 have been replaced by some a',.erage

wave velocity c such that the length of the resulting vector has the same length

as that appearing in Figure A.la. However., this approximation yields a resultant

having the same direction as the v'=!ctor z. Now, in general, for a normal mode.,

the angle p~ may vary between zero and 900 for different locations on -the mode;

however, at the points where the angle A3 is 900 the length of the vector z is a

minimum and at the point where P3 is zero the length of z is a maximum. Further,

a little trigonometry discloses that the maximum value possible for the angle -Y

is about 18-1/2* for which its cosine is about .95. This occurs for a ratio of

cl = 4 FothmoelklvauofC, 2, the maximum value of-y is less than

16'. Therefore., since the net effect of the T terms is to remove Perýý Lrom~.

the vibrating system we can make a v~er.,' accurate approximiation by substituting

cpG z and cp u for the first derivativie terms in Equations (A.16) and (A.17). In

a subsequent section the value of the adjusted c is computed so that the energy

radiated by the approximate term is equal to the energy radiated by the two

accurate terms. It is found that for m~ost conditions c wil.l be equal to more

than 90 15efceftt Of'cl
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With these approximations our working equations become

D L~ + Ku- + C f)u + m-u p (A.18)

PI = n p + Kz + c pz (A. 19)

A.2.1 Physical Meaning of Terms of Fundamental Equations

The terms in Equations (A.18) and (A.19) have been grouped into components

representing the motion of the structure and components representing the mution

of the soil. The pressure p is a fictitious quantity, it does not represent

the pressure at the interface between the structure and soil. The latter would

be just the sum of the pressure components necessary to maintain the structure

in its deformed condition, DL(u), and the inertia component, mu. All of the

other terms represent the effects of the free-field pressure and soil structure

interaction, however, since P1 is immediately computable once the pressure wave

Shas been established, it forms a convenient forcing function for the equation

of motion (A.168).

Actually, the term PIis not quite as fictitious as it appears. If Equation

(A.18) is multiplied through by u , the velocity of the structure, and then

integrated with respect to surface area and time, each of the resulting terms

has physical significance.

t . t
f f DL(•) u dA dt + K f f u - u dA dt
o A o A (A.20)

t . t .. . t
+ cl pf f u dA dt + m f f u . u dA dt = f f p1 • u dA dt

oA oA oA
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Thus, in Equation (A.20) the first integral represents the potential energy

stored as strair energy in the entire structure between the times zrro and t.

(All energies are here computed with respect to the fixed coordinate system.)

The second integral represents the recoverable potential energy stored as strain

energy in the soil surrounding the structure. The third integral represents

the energy dissipated during time zero to t in the form of a wave radiated from

the structure. The fourth integral represents the kinetic energy delivered

to the structure within the interval zero to t. Therefore, the integral on the

right hand side of the equal sign represents the total energy delivered to the

soil-structure system during the time intervals zero to t. Thus, the pressure

P, represents the component of pressure around the structure available to deliver

energy to the soil-structure system during motion of the structure.

Immediately we see that if T and u have been estimated, Equation (A.20)

provides a useful check of the results. This is particularly true for rigid

body muLlon because in this instance u and u are invarient over the surfac of

the structure and the first integral becomes identically zero. Then any over-

estimate of u would indicate a larger total energy on the left side of Equation

(A.20) than right, clearly a physical impossibility.

A.2.2 Range of Appl.cability of the Basic Equations

Define P 2  P - Kz (A.21)

Substituting (A.21) and
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into Equation (A.20) there results

t t t
f f DL(u) • u dA dt + f f K w -u dA dL + cp f f U " u dA dt
o A oA oA

t .. t
+m uf u dAdt = ff 2P . u dA dt (A.22)

3A oA

We see now that p 2 is not influenced by K and that the second integral

appears in terms of w • u, where w is the departure of the structure motion

from the free-field motion, z.

Equation (A.22) provides a useful means for estimating the degrce of

approximation introduced into the solution when nonlinear or nonelastic soils

are approximated by an elastic soil with suitable adjusted constants. We

observe first that the factor DL(u) is numerically equal to the pressure that

must be distributed over the surface of the structure in order to maintain it

in its deformed configuration. Also, we no!;e that even if the structure were

highly nonlinear there would be some other nonlinear operaLui, r u), for instance,

that would replace the linear operator throughout the entire argument to this

point. Also, this nonlinear operator would be equivalent to the static pressure

necessary to maintain the structure in its deformed condition. Now, whether

elastic or inelastic, the pressure so computed is equal to the design pressure

for the structure, or more properly the equivalent static design pressure. For

most underground structures this equivalent static pressure is on the order of

the peak overpressure that the structure is designed to resist.
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The factor w also represents a pressure. Thus, we can comnpare the relative

influence of the first and second integrals of Equation (A.22) by comparing KW

with peak design overpressure, inasmuch as all .4' the other factors in the j
integrals are identical. If the real soil were highly nonlinear, and a linear

approximation substituted, probably the best approximation would be to take a

value of K that would yield the same energy content at a specific displacement

level as did the real soil. In other words, the triangular area under the stress-

strain curve of the approximating elastic soil would be made equal to the area

under this stress-strain curve of the nonlinear soil at its expected maximum

strain. It is interesting to note that although the second integral in Equation

(A.22) represents reversible energy for the elastic case, for the inelastic case

it represents both reversible and irreversible (hysteresis) energy stored in the

surrounding soil. In the elastic case all of this energy may be delivered to

the structure at some point during its vibration but for the inelastic case only

a portion could be delivered. Thus, the net effect of substituting an elastic

equivalent for a real inelastic soil i; slightly conservative because the possible

maximum relative displacement and maximum absolute acceleration of the structure

are proportional to the square root of the energy available to the structure.

To gain an estimate of the relative magnitude of the first, two integrals we form

the ratio, R(t) t
f Kw.u dA dt

R(t) = A

f fDL(). u dA dt
oA
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Since we desire order of magnitude values only we define R

t ff~ u dAdt

R av o A

DL(u) av ftf u dA dto A

where w and L(U) represent average values. Since the integrals are identi-
av av

cal we can substitute

K w Kw
R av av

DL(u) DL (i) + .,L (7)
av av av

Each of the three terms in the last equation represent a pressure. The

individual terms become more meaningful if we separate the motions represented

into components of the structure motion.

The total structure motion u can be represented as the sum of four components

uz= +z +w +w
0 c 0 c

where

z 0 free-field motion at structure centroid, constant for

entire structure

C 0
0 departure of structure centroid from free-field position
0

of structure centroid. This would be zero for a perfect

impedance match between structure and soil

w 0 -w

c o
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Now

DL (7) - DL(zo) - 0

because these represent undistorted motion.

Thus
P9 +I&
0 c av

DL(w)av + DL( )av

Now the pressure component DL( c)av is equal to the static pressure required

to deform the structure an amount w from its rest configuration. This is on thec

order of a small fraction of the peak overpressure that the structure is designed

to resist. The pressure component DL(ZC)av however represents th.- pressure that

would be required to uniformly compress the structure the amount that the pressure

wave compresses the free-field. This is a very large pressure, particularly for

soft soils having a small K.

Now, the departure of the structure centroid from the free-field centroid is

very small and becomes zero shortly after engulfment. Thus the term Kw is small0

in comparison with the others.

Therefore, within the accuracy being attempted we may write

-A
c avR

DL( c )av

Now, w and. z are of the same order of magnitude, probably within a factori c c

of 1.0 to 2.

R- c av
DL (ze)av

A -2 •



A

Thur., the ratio R, is of the same order of magnitude as the ratio of the

pressure required to reduce the volume of~ displaced soil to the pressure required

to reduce the structure volume by the same amount.

In general, this is a small number.

For instance., for a circular cylinder the pressure ratio is of the order

Pcyl c

where

E = modulus of elasticity of soil

E c = modulus of elasticity of cy 1 inder

(R/h) - radius to thickness ratio of cylinder.

For a thin concrete silo in fairly stiff soil

p soil = 50000 1cy x 20=
Pcyl 4000000x0

For a typical existing silo

Psoil 20000 1Pcyl =4000000 x 0•-

This lengthy discussion has been included in order that the reader might

apr, eciate that the conclusion that net response is insensi.ivc tu K, is quite

general, and does not hinge on numerical values chosen for a few specific

structures.

Therefore, we can use quite approximate values of K without seriously

influencing the accuracy of results obtained. An exception to this statement
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is that K should be estimated as accurately as practical when computing the rigid

body motion of the structure. However, we are fortunate in that K can be estimated

with best accuracy for this mode of motion.

It is not generally appreciated that the formula

is independent of any assum d stress-strain law if the c value used is the

instantaneous wave velocity. Of course the wave velocity does in general depend

upon the stress and stress-strain laws. However, for both the linear elastic

and linear viscoelastic stress-strain laws c is constant. Therefore, if the

correct value of c for a particular soil is determined the only errors introduced

by the velocity terms are those following from neglect of the inclination of the

pressure vector with respect to the velocity vector. This angle (Y of Figure

A.Ia) is generally quite small. Further, shnce the value of c in the equation

is adjusted to radiate the correct total amount of energy during one cycle (the

rate during the cycle will not be quite correct, in general) the erl deen

structure motion is negligible.

In conclusion, it is believed that Equations (A.18) and (A.19) provide nearly

hte best accuracy attainable with linear equations. A slight improvement could be

made without loss of linearity if the constant K were replaced with a linear

operator but this would greatly complicate computation. Any further improvement

would introduce the considerable difficulties associated with nonlinear equations.
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A.3 Formal Solution of the Fundamental Equations

The fundamental equations are

DL(u) + +u + cP U + mu - P1  (A.18)

pl a n ' * + Kz + cpz (A.19)

If we have any set of orthogonal functions Ti satisfying Equation (A.6)

I i IDL mC i 2(A.6)

and some set of boundary conditions and, further, if the mass per unit area of

the structure is constant then the fundamental equations can be solved by the

following set of equations

T 1 T(t) •i(A.23)

izl

L= -fp dA (A.24)

Ni = f m Ti dA (A.25)
A

(A> + )T =Ti TA.26)

mi1 m i Im

If the mass per unit area were not constant we see that the velocity term in

Equation (A.26) would render the equation meaningless because all of the other

terms in the equation are functions of time only.

It should be noted, further, that although we have chosen to carry the soil

spring constant K as a separate factor and that although this appears in Equation

(A.26) as the ratio E there is no necessity that K be taken as an average constant
m
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fa:tor. If we were to define a new linear operator I
D L (U) - D L(u) + K u (A.27)

then a somewhat different set of orthogonal functions - would be generated by

the equation analcgous to (A.6) and the factor Ein (A.26) would vanish. Thus

the only intrinsic limitation on the soil resistance factor is that it be given

by some linear operator operating on the displacement U.

There is an element of arbitrariness in the solution as presented to this

point because, as has been stated, the orthogonal functions ¢i employed can be

that set of functions generaied by any arbitrarily assumed set of boundary

conditions. One would suspect, however, that of all of the possible sets that

might be used in a given instance some particular set will result in the lEast

amount of computational effort required. This aspect of the theory, though of

considerable practical importance to the engineers who must carry out the computa-

tions, generally is glossed over in treatises on orthogonal functions. Therefore,

iL will be developed in detail in the following paragraphs as it applies to

solution of equations (A.18) and (A.19).

Our general method of procedure is to divide the total motion u into a rigid

body component u plus a deformational component ud' We then expand both u and
Sr Ud

U. in terms of the orthogonal functions •i and determine boundary conditions for

1)iresulting in the simplest overall solution. Thus,

r U (A.28)

i=ca i=w

U 0 (A.29)
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Since ur is a rigid body motion

DL (ur) = 0 (A.30)

Then, substituting (A.24) and (A.29) into (A.18)
Pc

(Si + Ti + "Cm S + T +' E'm (Si + T) +•i Ti r (A.1

Suppose, however, that it were permissible to set

ur = S 0r' (A.32)

that is the entire rigid body motion could be represented by the rth mode of

the system. We know, for instance, that this is true for a complete cylinder

where the first mode represents the rigid body motion. Then for all values of

the index i, other than r, Equation (A.31) would become .

22
T + , + K)f ' r)L T- T ,•r) (A.33)i i i Ti

In vlew of Equation (A.30) the frequency as given by Equation (A.6) would

r (A.-4)

Thus for the rth mode equation (A.31) becomes

(Sr+ Tr +m •r .+ Tr) -, - (S +T) = Tr (A.35)

where we see that for the rth mode the distinction between S and T is arbitraryr r

and Tr may be taken equal to zero, in conformity with definitions (A.28) and

(A.29) which restricted ud and the associated time functions Ti to deformational

motion.
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Thus, if a rigid body mode e satisfying Equation (A.32) can be shown± to

exist then all of the rigid body motion would result from a single solution of

Equation (A.26); no summations of the type indicated by Equation (A.29) would be

necessary. Inasmuch as the rigid body motion comprises by far the largest per-

centage of the total motion for small stiff structures, such as solid propellant

missile silos, a criterion for establishing the rigid body mode is of considerable

practical importance.

If a rigid body mode exists it will satisfy the equation

Tr = Constant Vector (A.36)

then from the orthogonality definition

f •r m dA = 0, r i (A.37)
A

T f r F m dA = 0 (A.38)

A

Denote

f .im dA (A.39)
A

Thus, the vector 4P-i is either equal to zero or perpendicular to the vector Tr"

Since in general the infinite set of vectors •i will not all have the same direc-

tion cosines we can conclude

f •i m dA = 0 (A.4o)

A

Now consider the structures to be in space, not acted upon by any exterior

forces, and in steady state vibration in the mode about the mass center. The

mass center under these conditions is motionless. Then the structure displacement

is given by
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•--- A -- • lJ sin I, t (A 4 1) i,•li

SAi •i sn(i t / A.1

where /

A is arbitrary.
i

The velocity and structure momentum are given by

V =W i Ai i cos Wi t (A.42)

m M mv M mui A, cos W t (A.43)

where m is the momentum of an element of the structure.

Since the centroid of the structure is motionless the total momentum of

the structure, M, must be zero at all times. Thus,

f -m d A = 0 (A.44)
A

A. (A* cos CU. t f m 0. dA = 0 (A.45)

Therefore

f m 0i dA - 0 (A.46)
A

Equation (A.46) is identical wiLh Equation (A.40); thus the criterion for

the existence of a rigid body mode is that the mode shouLIa be computed for

structure vibration about its centroid without influence from external forces

or reactions.

For self-closing shells, such as cylinders or toroids, normal modes are

customarily computed for the motionless center-of-mass condition. However, for

open shells, such as domes and arches, normal modes generally are computed for a

position-fixed boundary, the spring line of the shell, that is not in the plane
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of the mass centroid. For domes the normal modes computed for the motionless

mass centroid will not differ greatly from those appropriate to the position

fixed spring line; however, for cylindrical arches having no tie between the

foundations the difference between these two conditions wrill result in marked

divergence between the mode geometries.

Use of the centroidal normal modes imposes one complicating factor on

computation of the forcing function. Since the footing bases move with respect

to the centroid during vibration of the structure the generalized forcing

functions, Ti, must include the r'fect of foundation reactions. p1 as defined

by Equation (A.19) does not include this term. Essentially the intensity of

the reaction at any given instant of time would be equal to the static reaction

necessary to balance the forces distributed over the surface of the structure

at that same instance of time. These forces include the three components on

the right side of Equation (A.19).

As a practical matter when open structures, domes, arches, toroidal arches,

etc., are used, generally they are very large structures, aerodynamic systems shelters,

command and communication centers, etc. For the large structures the rigid bcdy

-•mot'on may be quite small in comparison vith the idccrmnetion =L,_n. Wh.en this

is true the functions Si will be colzderably smaller than the functions T of

Equation (A.31), If the functions Si are small enough to neglect then Equation

(A.31) becomes identical to Equation (A.25) and if position-fixed boundery

normal modes were to be used the boundary reaction forces would contribute no

energy to the system and, therefore would not have to be included in the computa-

tion of the generalized forcing function. Unfortunately, no general rules can
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be laid down for determination of the negligibility of S i with respect T i;

however., if the rigid body motion were to be computed using the centroidal

rigid body mode (which is just a lateral translation of the rigid structure)

and the deformational motion computed for pos.tion-fixed foundation modes the

results obtained would be conservative., i.e., tie deformational motion would be

somewhat overestimated though the degree of conservatism might be difficult

to establish.

An important characteristic of the modal motion can be determined from

the free vibration solution of Equations (A.26) (and equivalently Equations

* ~(A.33) and (A.35)). If we defineg.

~2 2cu +- (A. 47)n nm m

and 6 the damping coefficient expressed as a fraction of critical damiping

m (A.48)

then the free vibration corresponding ,th o Equation (A.26) becomes

2T. + 2602. T. +ýI. T. = 0 (A.49)
1 1 1 1 1

This is the familiad equation of the damped oscillator. Solving for 6 we

obtain

6i =PC (A-50)immm

if 6s is greater than one, the mode is over-critically damped. For the

ii

m mmmmm Animportan charactristie o the res onse funtion Ta be asypttericall aproace

the forcing function i of the latter contains no spikes qr jumps the response

function generally remains less than the forcing function. In fact, these
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conclusions are substantially correct even for oscillatory motions occurring

when 6 1 is less than one but greater than the square root of one-half.

Many methods are known for solution of equations of the general form of

Equation (A.26). One method is presented in Appendix B of this report; however,

it should be appreciated that a designer has his choice of the various analytic,

phase plane, computer, or other methods for solution of the equation.

One problem in the solution of Equation (A.26) is evaluation of the

forcing function Ti. A detailed general method of approach is presented in

the next section.

A.4 Evaluation of Generalized Forcing Functions

In this section a general method for evaluation of the forcing functions

T. will be presented. The method is applicable to hand numerical, graphical,
i

and digital computer computation.

In the development that follows it is presumed that the geometry of the

normal modes •i is known. .?or most structures likely to be used the modal

components are available in the literature.

In general the ground shook wave will not be a plan( 1:ace. However, by

f..r the largest . .:i)f t .t iiýrgy delivered to the structure will come from

the air-induced ground shock wave. This wave, strictly speaking, is not plane,

but the portion of the wave actually impinging against the structure can be

taken as plane with negligible error even for structures of a couple of hundred

feet span and waves resulting from very small bombs. It should be noted that

the air-induced wave, in general, will have at least six components, two direct

Rnd four reflected from bedrock. The six components of the wave are:
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1. The incident compression wave

2. The incident shear wave

3. The compression wave resulting from reflection of

the compression wave.

4. The shear wave resulting from reflection of the compression wave

5. The compression wave resulting from reflection of the shear wave

6. The shear wave resulting from reflection of the shear wave.

These six components are shown in Figure A.2. It should be noted that for

a substantially level bedrock layer that the unit vectors perpendicular to the

advancing wave fronts all lie in the same vertical plane, but that the inclination

of the unit vectors with respect to horizontal varies among the components.

In a nonhomogeneous soil consisting essentially of differing horizontal

strata with fairly well defined interfaces the number of components of the ground

shock wave, each still substentially plane, arriving at the structure could be

considerably increased. in addition to these, 8t the position of thc ±Lurc,

luijere generally will be a large number of randomly oriented, low intensity waves

resulting from diffraction of the air-induced ground shock wave around boulders

and other local discontinuities and a component of the directly transmitted

shock originating at the crater and propagating outward through the soil to the

structure. Since this latter component must travel through a much longer soil

path than does the air-induced shock to reach the structure the number of random

defractions that have occurred is considerably greater for the directly transmitted

component of shock than for the air-induced. In the 100 to 1000 psi range the

directly transmitted component generally appears essentially as hash consisting
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of spikes of acceleration of fairly high intensity but short duration, a fraction

of a millisecond to a few milliseconds.

It is not our purpose in this report to present detailed methods for deter-

mining the free-field ground motion at the structure position. This information

is contained in a number of lengthy reports devoted exclusively to that topic.

Indeed, this is one of the major areas of research still being investigated.

However, in Section 4 of this report we do present some general rules for

estimating the order of magnitude of importance of the various components of

shock that might reach the structure.

Whatever methods or data are ed to establish the free-field motion-time

history at the structure position these data will include pressure in three

directions, particle velocity, and particle displacement, all given as functions

of time. Generally, accelerations associated with each wave component also are

acailable.

The equotion for the generalized forcing function, "i, is

TiW T P p (A.24)

where

Pi=n + k~z+ pE~ (A-191)

It would be possible of course to expand these expressions by the methods

of vector analysis and obtain formulas for their evaluation in terms of the scalar

magnitudes of the various vectors and the angles between these. However, a much

simpler system of evaluation can be developed from a consideration of the physical

meanings of the terms and introduction of an artifical device, an imaginary
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rectangular parallelepiped circumscribed about the structure. Though this

artificiality does introduce one avenue of possible confusion (which is discussed

subsequently) it materially simplifies the computations required to evaluate the

Ti integrals, particularly the component due to the free field pressure tensor, p.

Now, we note that in integral (A.24) the product of the pressure vector pl

and the differential area, dA, is a differential force. The dot product of this

force with the displacement, i then is the differential energy delivered to the

structure by the force p1 dA moving through a distance, •i Thus the integral

in Equation (A.24) is the total energy that could be delivered to the structure

by the force field p if the latter remained constant while the structure deformed

into the displacement configuration, 1."

Consider any shell structure. About the structure describe an imaginary

rectangular parallelepiped. It is not essential that the parallelepiped hve any

pL-t, C.] 1, -h , tations w:ild be siiip bL iif fuur faces of

the parallelepiped are vertical, two of these parallel to the direction of the

advancing ground shock waves. Figure A.3 -" •eo sucli a pal'allelepiped

circumscribed about a vertical cylinder. Three coordinate directions ý, 7), and

ar8 three unit vectors [, •, and • are defined in the figure. In Section AA of

Figure A.3 a differential element of area, dA, has been emphasized. A pressure

vector p and a displacement vector • act on the area dA. For clarity these are

shown in the r, ' plane though this is not essential.

Now if both the force vector, pl, and the displacement vector, •, are

resolved into their components in the •, r, and C directions the results are

as shown in the figure (only the e and r) components are shown). Thus the
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energy delivered to the element dA is equal to the sums of the energies delivered

by the components of the pressure vector perpendicular to the faces of the

parallelepiped acting through the projections of the displacement volume on the

same faces.

The vectors kz and pcz present no problems in resolution into their

components on the faces of the parallelepiped.

The tensor p presents a somewhat different problem. Though the vector

n p- is very simple to represent symbolically its actual numerical computation

can become quite tedious. It ttrns out that this computation need not be carried

out. Figure A.4 shows a wave front and also a differential element of soil behind

the wave front. Th components of pressure acting on the differential element of

soil are shown. Generally the components shown as Pb and pc of Figure A.4 are

equal but this is not necessarily true. The Mohr's cycle for the pressure in the

r Dlane also is given on Figure A.4, and the component of pressure p appearing

on the vertical face uf the parallelepiped ABCD is shown as p. The horizontal

comiponent of .thiF in the r direction i- 9hown as p • -). A factor X is defined on

the Figure where >pa is equal to p • -Ti. Now since beLi>4 the wave front, pa' '

and pc bear a constant relationship to each other the factor X is a constant

applicable to planes ABCD and EFGH. It should be noted that the pressure •)

appearing on plane in ABCD, is the same in numerical magnitude as that appearing

on the plane EFGH, other conditions being equal. Thus the pressure at any point

) on plane ABCD or EFGH is just the wave pressure pa multiplied by a constant factor

>, which is easily determinable in any specific instance. Further, if the ground

pressure wave decays as a function of time the pressure on a vertical plane
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perpendicular to the 7) axis at any given instant is equal to the pressure Pa

existing at that instant multiplied by X . TheX factor is neither position

nor time dependent for ai.,y given plane wave. FactorsX andX C can similarly

be defined for the other foux faces of the parallelepiped.

Figure A.5 shows a similar construction for a shear wave. It should be noted

that the shear wave has no component on planes ABFE and DCGH. X factors for

these waves can be defined similarly to those for the compression waves.

The time factor involved in the wave motion has not yet been considered.

Figure A.6 shows a section of the cylinder of Figure A.3 tazzen parallel to the

S•, C axes. A compression wave is shown during the period of engulfment. Now,

it should be carefully observed that although the computations are carried out

by applying pressure components to the surfaces of the parallelepiped the varia-

tion of pressure component versus time on each element of the modal displacement

component on the parallelepiped is identical with the pressure versus time at the

element of structure surface projected on the faces of the parallelepiped, e.g.,

pressure on element da3 at time t is equal to the component of pressure on
element dA at time t projected perpendicular to plane ABCD.

3

Thus for the instant depicted in Figure A.6 if the pressure versus time

curve is representetd P(t). where time is taken as zero at the wave front, and

if we denote the component of pressure at element daI by p1 we have

Pl = Projection P(O)
(A.51)

P =Projection P(O)
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and

P3  Projection p(s). (A.52)

The distance, s, is measured perpendicular to the plane of the wave front.

In summary, the integral. (A.24) can be evaluated as follows:

1. For the ith mode compute the norm N1 .

2. Circumscribe an imaginary parallelepiped about the structure.

3. Impose the dieplaccmcnt of a normal mode upon the structure

and translate components of this deformation onto the six faces

of the parallelepiped. These, then, will appear as relief maps.

4. Divide the faces of the parallelepiped into a grid of small

elements (acceptable accuracy generally can be obtained with a

course grid of four or five elements in each direction).

5. Determine the time lag for each element.

6. Determine the product of pressure components and volume for each

element and each of three components of pressure.

7. "s• th1• ... )-es ffl: el cements at specific time instants and

divide by the norm N..

8. Plot the results as a function of time. This is the function

T
i"

The actual computation outlined in the previous eight steps becomes a natter

of bookkeeping and for different waves and structure characteristics differing

techniques will be most expeditious. Several general characteristics that can be

used to simplify the overall procedure will be enumerated.



1. For plane waves the factor p.z is equal in numerical magnitude to

Pa of the pressure tensor; however, whereas the latter is compression

on both the windward cit.d leeward faces of the structure, i.e., plane

ABCD and plane EFGH, the pcz term is compression on the windward face

and tension on the leeward face. The direction of z does not change

as it passes the structure. Also it should be noted that the factor

pcz contributes no component of pressure to planes ABFE and DCGH if

they have been oriented as suggested.

2. The factor Kz produces a compression stress on planes ABCD and AMHD.

It produces a tension stress on planes EFGH and BFGC; it produces

no s ress on planes ABFE and D;CGH.

3. If the structure is subjected to more than a single wave generally

the simplcer procedure is to compute the effects of each wave

separately and then sum the results in the last step.

4. If mor2 than a single mode is to be investigated all factors for the

various modes, except the displacement factors -i da, for instance)

are identical for the several modes.

5. For rigid body motion the "relief map" on planes ABCD, EFGH, AEHD,

and DFGC represent just displacements of the planes along their normals.

The planes ABFE and DCGH, contribute zero to the rigid body motion.

6. Each component of the rigid body motion is orthogonal to all of the

other modes of the system and, therefore, may be handled separately.

The reader may well question whether the detailed calculations outlined above

are justified in view of the inherent inaccuracy of input data. Generally they

A -4



will not be Justifiable. However, the general characterisitics of the modes and

essential geometric relations presented can be used in specific instances to

delineate which of the input wave components are significant, which can be

neglected (generally all three shear components and the shear reflection induced

compression components), and to establish the cardinal characteristics of the

forcing functions T. such as rise time, peak value, and decay rate. Further,

rough estimates of the peak amplitides and rise times of the higher order modes

can be determined generally with the end result that the higher order modes can

be neglected.

A.5 Coupled Modes

In reality the modes of the system that we have approximated by Equations

(A.18) and (A.19) are coupled, the coupling being introduced by the two first

time derivative terms of Equation (A.16).

In this section we will develop the theory of coupled moles for this general

system. The results indicate that the simplifications made are acceptable from a

practical standpoint. Further, the theory provides the necessary corrections for

the rare instances where the modal coupling must be considered.

If we make the simplification that the nonlinear resistance term kF(w) can

be replaced by the term K Equation (A.16) becomes

KL(u) + K(u) + c1 p P * "U n+ c 2 p P u • u IA+ mu
-- I-- *_. (A.53)

=n p + kz + c 1 p nz n + c 2 p z•

We now define two vectors 7p and *z

where cI - + C 2  .
*u - - n u n + - u u (A.54)

and c

= Cn z n + -c - z (A,55)
c A ---



Referring to Figure A.1 we see that pc •u and pc ?pz are the vector differences

between Equation (A.18) and (A.19) and the accurate Equation (A.53).

Making this substitution and shifting all correction terms to the right side

of the equal sign, Equation (A.53) becomes

DL(u) + Ku + cpu + mu n p- + Kz + cpz

+ cpz - cflu (A.56)

DL(U) + -- + 9 -+ K (A.57)

Since Pz is defined in terms of the input parameters it is immediately

computable so we can simplify the appearance of Equation (A.57) slightly by

defining

P' Pi + cP1 z (A.58)

Then

DL(u) + K(u)+ cp- + miu = - 7C/Iu (A.59)
i| u

Equation (A.59) is of the same form as Equation (A.18) with the Pu term added.

Define T' f P'" dA (A.6o)
1 N liA

Then

Sill (A.61)
li=l

Substitute Equations (A.6), (A.23), (A.54) and (A.61) into Equation (A.59).

Divide through by m. The result is

[ + J-2 T + + K)T]i

iJu M m
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Equations (A.66) can be solved by successive approximations. At least five

conclusions can be drawn f:om Equations (A.65) and (A.66).
a

1. The coupling factors remove energy from each mode and deliver it

to all other modes.

2. The coupling between modes is a function of the lateral (as opposed

to normal) motions of the modes. (The amplitudes of these are

invariably small fractions of the normal components of motion.)

S3. The numerical values of the factors within the brackets are small

and decrease rapidly with increasing modal index. The values are

the largest for right circular cylinders. Even for this case the

coupling factor between the first and second deformational modes

is less than 3%.

4. For tne T. monotonically approaching zero the coupling of energy to.3

other modes is very small (less than 1% total for the first 10 modes).

5. If damping (i) is very small and if the T are approximately cyclic,

M i

over a period of time considerably energy can be interchanged between

modes.

We conclude therefore that the simplification introduced in the previous

subsections will not materially affect computed results for the heavily damped

underground structures.

A development similar to the above can be carried out when the mass of the

structure varies from point to point.



A.6 Natural Frequency

In order to use the material presented in this chapter it is necessary to

know or determine the geometries of the normal modes Ti and the associated

natural frequencies.

In theory these can be obtained by solution of Equation (A.6) together

with the boundary equations

DL(.i) n 1 m 2  
-i (A.6)

B n 0 (n = 1,2..)

These equations are deceptively simple. Actually the operator L( ) may be

a complex differential expression and in fact, since actual numerical work must

generally be carried out for the vector functions in terms of their components

Equation (A.6) generally must be replaced by two or tbhree scalar equations that

are interdependent. The boundary equations are similarly multiplied in number.

We are fortunate in that most of the structure types of interest have

already been subjected to such analysis and as a result the frequencies and

modal geometries (generally, the components rf the modes) are known.

If a structure having geometry significantly different tnan those for

which modal data exists must be analyzed by the r)rmal mode method the modal

geometries and frequencies can be determined by approximate methods. The

determination need not be highly accurate.
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APPENDIX B

A NUMERICAL METHOD OF SOLUTION
OF THE RESPONSE EQUATION

A method for solving equations of the form

T_ + T4 T=T (B.1)
2

is desired (Note T is equivalent to T-2 of Section 5 and Appendix A. In

this appendix it is presumed to be a known function of time.

We have the initial conditions that

T (0) - o (B.0)

T (0) = 0

7 (0) - 0

Integrating once

T 26 T t.
T26- T +f T dt f d-rdt (B.3)

02+T 0 0

Now suppose that the time axis were divided into a number of equal incre-

.ments At. We order the increments from zero to m with zero at the origin. Also

we denote the values of T andT at the end of the nth increment by T and T nn n

With these definitions we can approximate Equation (B.3) by

2 ----T6 AT ni 1=n Ti=n
T+ 1 +Tn + T At + Z (B.4)

2P2 At i=l



If we denote

Mt =As (B.5)

we have for all n greater than zero

Tn+l 2 (T -2T) +n2s) K i Tn
n ~~"l 2 1 -T 1

(B.6)
-46 As T + T

n n-I

For n = 0 we obtain for T1

T (As)2  (B.7I A (As)• 2+ 46(As) + 2

Equation (B.6) can be simplified for computation

Denote

Cn+1 T n+1 -Tn (B.8)

then

Sn+1 2(As)2  [Tn - T ]

- (46As + l)(Tn-T n-) (B.9)

+ (Tn.I - Tn- 2 )

This can be rewritten

2 A

C n + 1 2 ( & s ) [ T - TB .1 0

(C.no)
- (i46As+I) Cn +Cn 1

I



In this scheme

2

c., T2  T1 AS) (B.n)
l (A F3 46(As) +

C2  (s) 2 (1 - Cl) - (45As+l) c1 (B.12)

Table B.1 shows one setup for the computations.
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